United States Department of Agriculture USDA Forest Service Pacific Northwest Region # Mt. Hood National Forest Annual Monitoring Report Fiscal Year 2009 2009 # TABLE OF CONTENTS | Foreword | 1 | |---|----| | Introduction | 5 | | Progress Towards Sustainability on the Mt. Hood National Forest | 6 | | Background | 6 | | Transitioning the Forest Plan Monitoring Report | 7 | | Systems-Based Approach | 8 | | Oregon Board of Forestry's Seven Strategies | 8 | | Forest Plan Monitoring Report | 10 | | Strategy A | 10 | | Legal Framework | 10 | | Economic Framework | 11 | | Institutional Framework | 12 | | Strategy B | 15 | | Social and Cultural Values | 15 | | Cultural Heritage | 17 | | Built Capital | 18 | | Natural Capital | 20 | | Strategy C | 23 | | Productive Capacity | 23 | | Strategy D | 24 | | Water Quality | 24 | | Stream Function & Condition | 25 | | Soil Productivity | 26 | | Strategy E | 28 | | Vegetation Composition and Pattern | 28 | | Population Viability | 28 | | Fish Habitat | 29 | | Wildlife Habitat | 29 | | Special Habitats | 30 | | Species of Concern | 31 | |--|-----| | Threatened, Endangered and Sensitive Plants | 32 | | Ecological Legacies | 32 | | Strategy F | 34 | | Disturbance Processes | 34 | | Air Quality | 40 | | Strategy G | 43 | | Carbon Sequestration | 43 | | Conclusion | 44 | | Appendix A: Detailed Reports, including Forest Plan Monitoring Goals and Recommendations | 45 | | Strategy A | 46 | | Volunteers and Partnerships | 46 | | Financial Review | 48 | | Forest Plan Amendments | 49 | | Strategy B | 53 | | Recreation | 53 | | Heritage Resources | 62 | | Transportation/Roads | 65 | | Range Management | 67 | | Minerals | 70 | | Strategy C | 72 | | Forest Resources and Timber Supply | 72 | | Strategy D | 83 | | Water Resources | 83 | | Soil Resources | 89 | | Strategy E | 92 | | Fisheries Program | 92 | | Wildlife and Plants | 104 | | Wildlife Sustainability | 115 | | Strategy F | 119 | | Fire | 119 | | Noxious Weeds | 121 | |--|--------------| | Geology | 126 | | Air Quality | 127 | | Strategy G | 132 | | Volunteers, Partnerships, & Collaborative Efforts | 132 | | Timber and Silvicultural Practices | 132 | | Soils | 133 | | Fire | 133 | | Appendix B: Mt. Hood Draft Criteria and Indicators | 134 | | Appendix C: Mt. Hood National Forest Goals, Vision Statements, and Value Sta | atements 135 | | Oregon Board of Forestry Strategies and Mt. Hood National Forest Goals | 135 | | Desired Future Condition of Mt. Hood National Forest ("Vision Statements") | 138 | | Mt. Hood National Forest's Legal Framework ("Value Statements") | 139 | | Appendix D: List of Preparers | 140 | | Appendix E: Cumulative Insect-Caused Tree Mortality, 1999-2009 | 141 | | Appendix F: Mt. Hood National Forest Volume Summary 1994-2009 | 142 | # **F**OREWORD # Stewardship Challenges for the Mt. Hood National Forest Mt. Hood is an Oregon icon. People care deeply about public lands in the Pacific Northwest. People in the greater Portland/Vancouver metropolitan area in particular, as well as those in surrounding urban and rural communities, recognize the important contribution Mt Hood National Forest makes to livability and sustainability of our communities. It is therefore no surprise that so many citizens are dedicated to learning about, protecting, and conserving our collective heritage and legacy of public lands and their associated natural resources. The Mt. Hood National Forest as an organization and its employees are all similarly dedicated to protecting and conserving the Forest and its natural resources and to serving people. We are especially interested in developing a better understanding of the unique contributions the Forest can make to the livability and sustainability of the greater Portland/Vancouver metropolitan area as well as surrounding communities. We published a strategic stewardship plan on Earth Day, April 22, 2006, that frames and organizes the stewardship of Mt. Hood National Forest around a set of stewardship challenges. We have done so with the aim of better understanding and meeting the needs of citizens, fostering citizen stewardship, and providing a starting point for dialogue and catalyst for learning and change on the part of the Forest Service and the citizens it serves to better care for the land. The plan is formulated around three guiding principles: - **Ecosystem Restoration:** Working actively to restore the forest's ecosystems, ecosystem processes, ecosystem functions, and recognizing people as part of the ecosystem. - **Citizen Stewardship:** Engaging people in stewardship of their National Forest and its natural resources. - **Economic Sustainability:** Securing economic sustainability of the Forest and its associated programs of natural resource management and management of peoples' use and occupancy of the Forest. People all across the Pacific Northwest regard Mt. Hood and its environs as their own. The Forest hosts four and one-half million visitors every year. They greatly enjoy first hand experiences of the mountain and its natural resources through all forms of recreation and tourism. The forest's beauty reminds us all that we care about something greater than ourselves. We care about fish, wildlife, forests, and the watersheds in which we live. Ninety-eight percent of the Forest is somebody's municipal water supply. We stand in awe of the ebb and flow of natural processes in the ecosystem. For all these reasons and more, the Mt. Hood National Forest is truly the Peoples' Forest! Citizens are increasingly recognizing that stewardship of the Forest is not the sole responsibility of government officials, but is instead a shared civic responsibility. And increasingly, citizens are recognizing that stewardship is more than a duty; it is a privilege and an honor. Over 1,000 people roll up their sleeves every year volunteering their time and effort to help take care of their National Forest. Citizens help maintain trails, administer Wilderness areas, maintain historic structures, conduct conservation education, improve fish passage on and off the Forest, teach mountaineering skills, and a myriad of other activities. In addition, through business relationships—permits, contracts, partnership agreements, and memoranda of understanding—many more people help us deliver services to and for the public. Included among these are the many outfitter guides who operate on the Forest, five ski areas, the concessionaire who helps us run and maintain our campgrounds, Oregon Department of Transportation who cooperates with us in maintenance of roads, Portland State University, Portland General Electric, the City of Portland with whom we co-manage Bull Run Watershed to provide drinking water to the residents of Portland, and many others. As I look ahead to the next decades, I have come to recognize that the Forest faces significant challenges. These challenges are daunting. I believe citizen stewardship is the key to securing the Mt. Hood National Forest and its associated natural resources as a legacy for our children. The Mt. Hood National Forest Strategic Stewardship Plan aims toward weaving together the environment, the people who care about the Forest, and the economic benefit of the flow of goods and services from the Forest, including environmental services. In the Plan, we offer the following stewardship challenges as a catalyst for learning and change on the part of the Forest Service and also for the citizens we serve to better care for the land. We view these stewardship challenges as a starting point for dialogue between the agency and current and potential partners in designing opportunities for public lands stewardship — including other federal, state, and local agencies; citizens; state and local governments; corporations; and non-governmental organizations. These are also offered in recognition that many organizations, corporations, communities, and public agencies are becoming greener and desire to redeem their conservation responsibilities or take conservation initiatives. While we will be looking for opportunities for collaboration in joint stewardship for public lands, we will also be looking to design our own organization for the future which maximizes the efficiency of a much smaller workforce that is still committed to meeting the demands of the public on our well-loved National Forest. The challenges articulated in the Strategic Stewardship Plan are shown in **Table 1**. The rationale behind the challenges is outlined below: 1. The Forest is challenged to protect communities from wildfire through fuels treatments on public lands and in cooperation with local and state fire fighting agencies. Fuel treatments need to be accomplished in the wildland-urban interface, municipal watersheds, and other strategic locations on the Forest. Fire has been excluded from many eastside forest stands where ecosystem processes are dependent on relatively frequent natural fires. The result is that for the small number of fires that escape initial attack on the east-side, many stands are destroyed by fire rather than sustained—to the detriment of watershed, wildlife, and community values. The west-side forests are naturally characterized by much longer return frequency forest stand replacement fires. For the west-side, fuel management is aimed at protecting communities and providing anchors for strategic defense against large-scale fires. In both cases, protection of communities from fire is dependent on strategically designed and placed fuels treatments and strong cooperation and collaboration among all firefighting agencies for fighting wildfire. - 2. Public and private lands stream habitat restoration is critical to the recovery of aquatic species. Many of Oregon's most
important fish species have declined dramatically to the point where they are listed under the Endangered Species Act. While the Forest is endowed with much preeminent high quality fish habitat, some problem areas remain within the Forest, and many opportunities for restoration exist on public and private lands outside the Forest boundary. As an organization, the Forest is also endowed with high quality professional fisheries expertise. Every year we collaborate with citizens—volunteers and landowners, counties, watershed councils, sportsmen's associations, schools, conservation and environmental organizations, other agencies, and private companies, to find, assess, plan, and implement high priority stream habitat restoration projects. - 3. Forests must be managed sustainably in a way that fosters forest health and provides forest products for our use. The 1994 Northwest Forest Plan, along with the Mt. Hood National Forest Plan, provides a policy framework for ecosystem management and maintaining a sustainable supply of timber and other forest products. In addition, the Mt. Hood National Forest, in collaboration with Portland State University, and Forest Service Headquarters in Washington D.C. is working on improving our understanding of the environmental, social, and economic dimensions of sustainability and its measurement through criteria and indicators. - 4. Public, private, and civic interests must work together to foster sustainable regional recreation which is essential to our spirits and our economy. Tourism and recreation associated with the mountain not only reinvigorates our spirits and brings families and friends closer together, but plays an important role in the regional economy. We estimate that tourism and recreation alone generate 34 million dollars of spending in the regional economy every year. Public lands recreation is an integral part of regional recreation and tourism—we must therefore ensure that (a) opportunities for public lands recreation are well-matched to both the capabilities of the land and regional demand so that people's needs are met and the natural resources upon which recreation depends are protected and conserved, (b) conflicts in all the many uses on public lands are minimized through good planning and active citizen engagement, and (c) public, private, and civic interests need to work together to ensure that information about recreation and tourism opportunities are readily available and accessible to all members of our communities. - 5. We face a continuing challenge of ensuring that public lands and the goods and services provided from them are relevant and important to an increasingly diverse society. People who care about and recreate on public lands come from wonderfully diverse communities, but to protect our forests in the long term, we must all work to ensure the continuing relevancy of public lands for an increasingly diverse society. We have learned across the globe that the only forests that are protected in the long term are those forests that people care about because people have a stake in the goods or services forests provide. We must therefore reach out to ensure that provision of recreation opportunities and special forest products is culturally relevant, is done in a way that honors the diversity among us, and that it fosters long term understanding and belief in the notions of citizen stewardship. Table 1: Stewardship Challenges from the Mt. Hood National Forest Strategic Stewardship Plan | Title | Stewardship Challenge | |---|--| | Community Wildfire
Protection | Protect communities from wildfire using fuels treatments on public lands and working in cooperation with local and state fire fighting agencies. Fuel treatments need to be accomplished in the wildland urban interface, municipal watersheds, and other strategic locations. | | Stream Habitat
Restoration | Restore public and private lands stream habitat, which is critical to the recovery of endangered aquatic species. | | Forest Health and
Products | Manage the National Forest sustainably, in a way that fosters forest health and provides forest products for peoples' use. | | Sustainable Recreation through Partnerships | Work together with public, private, and civic interests to foster sustainable regional recreation, which is essential to peoples' spirits and the economy. | | Serve an Increasingly
Diverse Society | Ensure that public lands and the goods, services, amenities, and environmental values provided are relevant and important to an increasingly diverse society. | The Oregon Board of Forestry created a Forestry Program for Oregon that embodies strategic intent on the part of the citizens of Oregon that all forests located within Oregon, including federal forests, be managed under the central theme of "conservation and sustainable management of Oregon's forests." The Program is based on three principles: - 1. Widely recognized international criteria and indicators serve as a useful framework for discovering, discussing, and assessing the sustainability of Oregon's forests. - 2. Sustainability requires maintaining a diversity of forestland ownerships and management objectives across the landscape and through time. - 3. Cooperative, non-regulatory methods are strongly preferred in achieving public benefits on private lands. The Board chose to use the seven sustainability criteria from the Montréal Process to articulate seven strategies for Oregon's forests. The Montréal Process criteria and indicators were developed by a working group of countries, including the United States, to measure the conservation and sustainable management of temperate and boreal forests. The Mt. Hood National Forest challenges articulated in the Forest's Strategic Stewardship Plan are closely related to the Board's seven strategies as indicated in Table 2 (following page). **Table 2:** Relationship of Mt. Hood National Forest Stewardship Challenges to Forestry Program for Oregon Strategies | | Forestry Program for Oregon Strategies | | | | | | | |--|--|--------------------|--------------------------|------------------------|---------------------------|---------------------|-------------------| | Mt. Hood
National Forest
Stewardship
Challenges | Legal
System | Diverse
Outputs | Maintain
Productivity | Protect Soil and Water | Conservation of Diversity | Ecosystem
Health | Carbon
Storage | | Community
Wildfire
Protection | (+) | + | + | + | + | + | + | | Stream Habitat
Restoration | (+) | + | + | + | + | + | | | Forest Health and Products | (+) | + | + | + | + | + | + | | Sustainable
Recreation | (+) | + | | + | | | | | Serve an
Increasingly
Diverse Society | (+) | + | | | | | | Note: + indicates a strong correlation, (+) indicates that a variety of grants, agreements, permits, and contracts are employed to authorize collaborative activities in accordance with federal statutes. ### INTRODUCTION The Mt. Hood National Forest (the Forest) continues with a strong commitment to the Forest Service motto of "Caring for the Land and Serving People." Inherent in this commitment is monitoring for sustainability of the Forest. The goal is to work with partners in finding an appropriate balance between sustainable social, economic, and ecological systems. The intent is to satisfy the values of the present without compromising the needs of future generations. The Land and Resource Management Plan for the Mt. Hood National Forest (Forest Plan), as amended in 1994 by the Management of Habitat for Late-Successional and Old-Growth Forest Related Species Within the Range of the Northern Spotted Owl (Northwest Forest Plan), was approved by Regional Forester John F. Butruille on October 17, 1990, and implementation of the Forest Plan began on February 11, 1991. The Forest is now in its eighteenth year of management under the Forest Plan direction. A part of implementing the Forest Plan involves a commitment to monitor and evaluate how well the Forest is doing. Based on review of information collected, adjustments in management actions or anticipated results can be identified. This process allows the Forest Plan to remain an active, usable document. Monitoring provides the decision-makers and the public information on the progress and results of implementing the Forest Plan. As the Forest moves into the second decade since the adoption of the Forest Plan in 1991, the Forest is beginning to switch the focus from short-term implementation monitoring to long-term outcomes of management with respect to key social, economic and ecological systems. This document highlights what the Forest is doing now and attempts to describe trends, in key resource areas, that are important to understanding long-term effects which ultimately affect the opportunity to sustain our needs now and in the future. # PROGRESS TOWARDS SUSTAINABILITY ON THE MT. HOOD NATIONAL FOREST Sustainable forest management aims to meet the needs of the present without compromising the ability of future generations to meet their own needs. Two conditions indicate sustainability for this definition: (1) ecosystem integrity is ensured/maintained; and, (2) the well-being of people is maintained or enhanced. The Federal commitment to sustainable forest and resource management is reflected in the agency's mission statement, Healthy Forest Initiative and new Strategic Plan. In addition, the 2008 National Forest Management Act planning rule affirms the overall goal for sustainability of forests, grasslands, and prairies including the
ecological, social, and economic components. It is best achieved by optimizing the critical components of social, economic, and ecological systems. Sustainability monitoring is a framework for long-term monitoring that describes, assesses, and evaluates progress towards sustainability and helps to validate "Every forest has a story. Forest-scale sustainability monitoring needs to have enough of a common framework to tell the stories at each scale of the organization. In the end, the vital few Criteria and Indicators must be able to help us tell the stories." --Gary Larsen, Mt. Hood Forest Supervisor current management. Ultimately, it provides the manager with information on conditions necessary to sustain systems, understand influences of forest management, and for balancing ecological requirements against social and economical considerations, values, and desired outcomes giving a more holistic approach to management. # **BACKGROUND** The question of sustainability has become a key consideration in most human endeavors. The key question is not how much should we harvest or how much should we protect, but rather is the overall system sustainable. Many organizations, nations and industrial groups have been trying to develop a set of criteria and indicators (C&I) to assess sustainability of forest ecosystems. The 1992 United Nations Conference on Environment & Development in Santiago, Chile led to an international agreement to develop criteria to assess sustainable ecosystem management. The Montreal Process Working Group was formed to advance the development of internationally accepted C&I for temperate and boreal forests at the national scale. In 1995, the US agreed to use the Montreal Process C&I to measure national progress in achieving the goals of sustainable forest management. Although much of the initial focus on C&I came from the need to report both nationally and internationally on sustainable forest management, there was a growing realization that sustainability issues are multi-scaled and that the national goals of sustainability rest, in a large part, on the actions that are carried out on the forest management unit scale. The need for forest- scale C&I initiatives arose from recognition that local-unit monitoring and reporting were essential to understanding and achieving sustainability. As a first step towards using local unit criteria and indicators, the Forest Service, in cooperation with the Centre of International Forestry Research (CIFOR), conducted a test in an area including the Boise National Forest in 1998. The CIFOR-North American test (Boise test) developed specific local unit criteria and indicators (similar to the Montreal Process C&I) that, when implemented, provide a measure of ecological, social and economic well being conditions in North America. Based on this preliminary test, the Forest Service Local Unit Criteria and Indicator Development (LUCID) test was chartered by the Chief in 1999. The LUCID pilot project was conducted by the USDA Forest Service Inventory and Monitoring Institute in conjunction with eight national forests to determine whether adopting a program of sustainability monitoring could enhance current monitoring programs at the local scale in the Forest Service. Using a systems framework, the LUCID test would further refine the criteria and indicators selected during the Boise test to define locally relevant core set of indicators that can be used by national forests to monitor system sustainability. The Mt. Hood National Forest LUCID team used the pilot test as an opportunity to begin building relationship with public entities that share common interests in the sustainability of resources, not just within the boundaries of the national forest, but in the surrounding areas and communities. As a result, Portland State University became full partners with the Mt Hood's LUCID team. #### TRANSITIONING THE FOREST PLAN MONITORING REPORT Using the tools and lessons learned from the LUCID test, the Mt. Hood National Forest is transitioning into a monitoring program that can answer the key sustainability questions and build a long-term method for looking at the Forest. The purpose of this report is to enhance the understanding of ecological, social, economic and institutional conditions and trends related to the Mt. Hood National Forest in order to contribute to a continuing dialog on achieving progress in sustainable management. # **Systems-Based Approach** Transitioning the monitoring report to a systems-based framework provides a way for studying the many competing influences on an area as one complete system in a sustainability context. It helps to describe important relationships across social, economic, and ecological systems. In such a framework, we can move away from our traditional approach of implementation monitoring, and instead, monitor the state of systems characterize by the critical system components (indicators) of forest sustainability. The collective information from all indicators is what informs us about the status of forests. See **Appendix B** for the Mt. Hood National Forest's list of criteria and indicators. # **Oregon Board of Forestry's Seven Strategies** In 2003, the Forestry Program for Oregon introduced a framework for discussing and measuring forest sustainability in Oregon, which included the development of seven strategies, adapted from the Montreal Process criteria. In 2007, nineteen indicators were introduced and endorsed by the Oregon Board of Forestry as tools to measure progress toward meeting sustainability goals. The monitoring report is organized by the Oregon Board of Forestry's Seven Strategies for forest sustainability (see **Figure 1**). **Table** 3 provides a crosswalk between the Oregon Strategies, the Montreal Process criteria, and the Mt. Hood National Forest criteria derived from the LUCID test. Additionally, **Table** 3 highlights the relationship of the Oregon Strategies and the Mt. Hood Forest Plan's goals, as well as points out the Forest's desired future conditions and Figure 1: Sustainable Forest Management legal framework. **Table 3 and the text in Appendix B** provide further context in understanding how the Mt Hood National Forest's work relates to larger scale sustainability frameworks being used statewide and globally. Table 3: Oregon Strategies/Mt. Hood National Forest Criteria/Montreal Process Criteria Crosswalk | Forestry Program for Oregon Strategies | Mt. Hood NF/LUCID Project Criteria | Comparable Montreal Process Criteria | |---|---|---| | Strategy A. Promote a sound legal system, effective and adequately funded government, leading-edge research, and sound economic policies | Criterion 1.3. Institutional Adequacy Criterion 1.1. Collaborative Stewardship | Criterion 7. Legal and institutional framework for forest conservation and sustainable management | | Strategy B. Ensure that Oregon's forests provide diverse social and economic outputs and benefits valued by the public in a fair, balanced, and efficient manner | Criterion 1.2. Community Resilience Criterion 1.4. Social and Cultural Values Criterion 1.5. Community Livability Criterion 3.1. Sustain minimum stocks of natural, human and built capital. Criterion 3.2. Produce and consume sustainable flows of market goods and services. Criterion 3.3. Produce and consume sustainable flows of non-market goods and services. Criterion 3.4. Ensure an equitable distribution of benefits and costs. Criterion 3.5. Maintain an appropriate regional economic trade balance. | Criterion 6. Maintenance and enhancement of long-term multiple socioeconomic benefits to meet the needs of societies. | | Strategy C. Maintain and enhance the productive capacity of Oregon's forests to improve the economic well-being of Oregon's communities | Criterion 2.3 & 2.4. Maintenance of Ecosystem Function & Structure | Criterion 2. Maintenance of productive capacity of forest ecosystems | | Strategy D. Protect, maintain, and enhance the soil and water resources of Oregon's forests | Criterion 2.3 & 2.4. Maintenance of Ecosystem Function & Structure | Criterion 4. Conservation and maintenance of soil and water resources | | Strategy E. Contribute to the conservation of diverse native plant and animal populations and their habitats in Oregon's forests | Criterion 2.2. Landscape Structure & Composition Criterion 2.5 & 2.6. Population Function & Structure Criterion 2.7. Genetic Function/Structure | Criterion 1. Conservation of biological diversity | | Strategy F. Protect, maintain, and enhance the health of Oregon's forest ecosystems, watersheds, and airsheds within a context of natural disturbance and active management | Criterion 2.1. Landscape Function Criterion 2.3. Ecosystem Function | Criterion 3. Maintenance of forest ecosystem health and vitality | | Strategy G. Enhance carbon storage in Oregon's forests and forest products | Criterion 2.3. Ecosystem Function | Criterion 5. Maintenance of forest's contribution to global carbon cycles | # FOREST PLAN MONITORING REPORT An Overview of Current Resource Conditions #### STRATEGY A Promote a sound legal system, effective and adequately funded government, leading-edge
research, and sound economic policies. This criterion and associated indicators addresses the extent that the legal (laws, regulations, guidelines), institutional (structure for social processes), and economic (economic policies) frameworks supports the conservation and sustainable management of forests. It includes the capacity to measure and monitor indicators (availability of up-to-date data), and the capacity to conduct and apply research and new technologies. Hence, the adequacy of these frameworks is of critical importance to social and forest sustainability. # **Legal Framework** The legal framework that provides the foundation for resource management on the Mt. Hood National Forest is described in Appendix B. The Forest is subject to a host of federal regulations. The principal regulations of greatest relevance to National Forest managers are associated with the following statutes: - Clean Water Act (CWA) - Code of Federal Regulations (CFR), Title VII - Endangered Species Act (ESA) - Healthy Forests Restoration Act (HFRA) - Multiple Use-Sustained Yield Act (MUYSA) - National Environmental Policy Act (NEPA) - National Forest Management Act (NFMA) - Occupational Safety and Health Act (OSHA) - Organic Administration Act - Wilderness Act - Wild and Scenic Rivers Act Forest Service activities are also governed through administrative requirements such as applicable sections of the U.S. Code, the Forest Service Manual, and the Forest Service Handbook. Other agencies who partner in various aspects of forest management on Forest include NOAA (National Oceanic and Atmospheric Administration) Fisheries, the U.S. Fish and Wildlife Service, and the Oregon State Historic Preservation Office. Other government-to-government relations regarding forest management are maintained with the Confederated Tribes of Warm Springs and the Confederated Tribes of Grand Ronde. #### Customary & Traditional Rights of Indigenous People The Forest Plan recognizes the federal government trust responsibilities to protect and preserve ceded rights and privileges of Native American Indians to access and use the Forest for traditional and religious values, including coordination and consultation of projects located on these accustomed areas. In 2009, consultation with the Confederated Tribes of the Warm Springs (CTWS) was completed on all projects located on tribal lands and usual and accustomed areas including the Cascade Crest fuels reduction project, located adjacent to the Warm Springs Reservation. Informal consultation conducted with the Confederated Tribes of Grand Ronde and CTWS in 2009 for the Mt. Hood Off-Highway Vehicle Environmental Impact Statement. Figure 2: Mt. Hood as seen from Barlow Pass, with huckleberry in the foreground. #### **Economic Framework** A regulatory environment and policies that recognize the long-term nature of investments and that allow the sustained use of goods and services at a level that meets the long-term demands for forest products and services provides an economic framework which supports sustainable forest management. The forest is managed in such a fashion that it will be resilient to external shocks in delivering its essential ecological, social and economic services. The determination of the capital base to pass on to future generations and investments is a social (and largely political) decision. Every year the Forest puts together a program of work based on the Forest's annual allocation of appropriations from Congress, the Forest's management capacity, and Forest priorities. Outputs and activities in individual years will vary due to changing conditions (including litigation) and Congressional budget appropriations. The annual program is an incremental step toward implementation of the goals and objectives and moves the Forest towards the many desired future conditions as set forth in the Forest Plan. The purpose of this monitoring item is to track funding levels necessary to achieve the outputs predicted in the Forest Plan. The total budget predicted for full Forest Plan implementation was \$21,759,718; actual funds available in FY 2009 were \$27,098,206. However, resource areas are experiencing funding shortfalls from those projected in the Forest Plan causing some program areas to move more slowly in meeting Plan objectives. In 2009, the Forest began development of a Forest-wide comprehensive strategy for vegetation management that addresses needs, opportunities and challenges. The strategy is intended to identify and prioritize opportunities to develop annual integrated programs of work to be implemented commensurate with the Forest's annual appropriations for current and out-year action plans; to prioritize funding and resources to the areas that have the greatest need and/or opportunity to result in long-term gains in healthy watersheds and forest conservation; to supply a predictable amount of forest products and restoration of priority watersheds and diverse habitats; and to build partnership, collaboration and public support with citizen groups, neighboring communities, and the Tribes. The strategy will be finalized in 2010. ### **Institutional Framework** Institutions are the set of rules or processes used by individuals to organize activities that produce outcomes. It guides people's interactions and provides the means for problem resolution. Institutions can support sustainable forest management by providing for public involvement activities, public education, maintain physical infrastructure to facilitate supply and delivery of ecosystem services, and undertakes periodic forest planning, assessment and policy review. Institutions, social values, and processes contribute to the governance of the forest system. # Collaborative Stewardship Collaborative stewardship is an example of a social process that integrates public values into forest management activities and hence, increases the likelihood of sustainability. Collaborative stewardship is the opportunity to have public values and beliefs heard, considered and incorporated into forest management activities, and the ability of publics to participate in management actions. Collaborative stewardship includes indicators that involves citizens in forest management activities, builds community and forest sector capacity, and integrates various kinds of expertise in the decision-making process. # Volunteers & Partnerships Volunteers and partnerships are an integral part of implementing the natural resource agenda at the local level. Volunteers include both individuals and organized groups. Some partnerships are involved in major collaborative and stewardship roles. During the 2009 season, Mt Hood broke its own volunteer engagement records by logging over 52,000 volunteer hours valued at over \$1.05 million. In addition, the forest established or continued over 400 organizational partnerships which leveraged an additional \$3.5 million in external resources to accomplish mutually beneficial work. The Forest has won awards and recognition in past years for its Forest's volunteer, youth, hosted and partnership programs such as Cascade Streamwatch, Salmon Watch, Clackamas Stewardship Partners, Sandy River Basin Partners, Barlow/Hood River Youth Conservation Corps, and others. Volunteers and partners contribute labor, skills, and funding, performing work in the interpretative program, fishing clinics, archeological survey projects, wildlife tracking surveys, trail maintenance, restoring recreation sites, grooming of snow trails, and filling positions as fire lookouts and wilderness stewards. As the number of Forest employees continues to downsize, more emphasis is placed on organized volunteer groups and partners to take an active role in recruiting, training and supervising volunteer activities. #### Collaborative Efforts Collaboration between local, state, federal agencies, tribes and other organizations continues to provide the necessary foundation for getting work done on the Forest. Watershed councils, Resource Advisory Committees, non-profit organizations, and community work are examples of public involvement in natural resource management and the decision-making process. The following are a sampling of the ongoing collaboration efforts on the Forest that are providing an increased capacity and collaborative decision-making for sustainable management of the Forest and support to the Mt Hood Strategic Stewardship Plan. #### Stewardship Contracts In FY 2005, a collaborative group known as the Clackamas Stewardship Partners (CSP) was formed with an interest in utilizing stewardship contracting authorities to implement priority watershed restoration and wildlife projects in the Clackamas watershed. This collaboration has been a wonderful success story, even winning the prestigious US Forest Service and Natural Resources Conservation Service "Two Chiefs' Partnership Award" in 2008. The efforts of diverse stakeholders. including county government, local environmental organizations, and others, resulted over \$3,850,000 in jobcreating restoration projects completed already under contract in the Clackamas River Figure 3: Restored side channel on the Salmon River. Basin. In 2009, four stewardship contracts resulted in \$868,173 of revenue for restoration projects in the Clackamas River Basin. #### Sandy River Basin Partners The Sandy River Basin Partners is a consortium of state, federal and local government organizations and private conservation groups interested in the long-term ecological health and management of the Sandy River Basin towards recovery of salmonids listed under the Endangered Species Act in the Sandy River watershed. In 2009 The Freshwater Trust, on behalf of the Sandy River Partners, retained River Design Group to complete an existing conditions assessment (Salmon River Restoration Plan, RDG 2009) and provide a restoration plan for the Salmon River. The restoration plan is in full implementation mode with numerous
projects being implemented annually including: side channel restoration, engineered log jams, large wood habitat features, and road decommissioning projects. ### **Forest Certification** Forest certification, or "green certification," is a voluntary, non-regulatory system for identifying forestland that is managed for long-term sustainability. For land managers, certification provides a means to demonstrate their commitment to environmentally responsible, sustainable forest management. In 2006, the Pinchot Institute for Conservation, working with the Forest Service in a pilot test, reviewed forest management practices on the Mt Hood National Forest using the standards of the Forest Stewardship Council (FSC) and Sustainable Forestry Initiative (SFI) certification. The overall purpose of the certification evaluation was to assess the potential consistency of forest certification with the Forest Service's mission to conserve and manage federal public lands in a sustainable manner; to understand to what degree the management of the selected National Forests aligns with existing requirements of the FSC and SFI programs; and to identify specific management system changes the agency might consider to enhance efficiencies and/or effectiveness in sustainability management. Members of the public were invited to provide feedback on the management practices of the Mt Hood National Forest. The 2007 final report showed the Forest met or exceeded most standards except those dealing with capacity for road maintenance, addressing forest health and harvesting of type 1 & 2 old growth. The report can be found at: http://pinchot.org/NFCertificationStudy_PIC.pdf. ## STRATEGY B Ensure that the Mt. Hood National Forest provides diverse social and economic outputs and benefits valued by the public in a fair, balanced, and efficient manner. This criterion and associated indicators address the long-term maintenance of multiple socioeconomic benefits to meet the need of societies. Indicators include the production of forest products and ecosystem services such as clean air, water, fish habitat, scenery and recreational opportunities. Investments in growing healthy forests, infrastructure, workforce capital, research and technologies, enrich individuals and communities by providing for environmental services and cultural, social, and spiritual needs and values. Equity is an important facet of social and cultural values. It refers to the inter- and intra-generational distribution of costs and benefits of sustainability. The well-being of forest-based communities is an important social value and an important aspect of public decision-making and policy regarding forests. As communities develop greater capacity and more resources, they can act as stewards of forest resources, maintain and improve their social well-being and determine their respective relationship and roles in sustaining forests. #### **Social and Cultural Values** These indicators provide an overview of community values and needs, and the extent to which those values are integrated into forest management decisions and policy discussions. Cultural and spiritual connections to forests vary among local communities and are represented by social values that the local communities place on a forest's contribution to providing scenic landscapes, recreational activities, special places, and traditional and religious uses. #### Recreational Values #### **Developed Recreation** As part of the Recreation Facility Analysis in 2007, the forest developed a recreation program niche statement which defines the benefits that the forest can provide. The following is an excerpt that addresses recreational values: Mt. Hood is an Oregon icon, exemplifying the connection between community and place. With its many historic and cultural threads, the mountain is woven into the economic and social fabric of people and communities in and around the forest. More than four million people come to the forest each year for play, exercise, learning, connection to nature, and spiritual renewal. Visitors appreciate the variety of year around, easily accessible recreation activities; and many consider it their "back yard." They value the landscape tapestry that provides great trails and opportunities for solitude. Others may only see the mountain from afar, but their lives are enriched by its intrinsic values. The Forest Plan goal is to provide year-round dispersed and developed recreation opportunities. Towards those goals, the Forest participated in the 2007 national recreation facility analysis (RFA) which evaluates each developed recreation site against established national criteria including conformance with the forest niche, financial efficiency, and environmental and community sustainability. The program of work is intended to bring the forest's developed recreation sites into alignment with the recreation niche and also with the resources available to operate and maintain them to standard. The program of work is important to address the backlog of needed maintenance at facilities that has been increasing over the years, creating health, safety, and visitor satisfaction concerns. #### Wilderness The Forest Plan goal for wilderness is to manage and maintain wilderness character and natural processes and to provide a wide range of permitted uses. In 2004, the Forest Service established a performance measure for evaluating how well the agency is managing wilderness. Each wilderness area is evaluated annually against the following ten elements: fire management; non-native, invasive plants; air quality; wilderness education plans; opportunities for solitude; recreation site inventory; outfitter/guides; land management plan standards; information management; and baseline workforce. Currently, the Forest's wilderness areas have not met the minimum stewardship levels established for these performance measures. The Chief of the Forest Service has challenged the agency to manage 100% of the National Forest wilderness areas to minimum stewardship levels by 2014, the 50th anniversary of the Wilderness Act. This challenge has become known as the 10-Year Wilderness Stewardship Challenge (10YWSC). Designated wilderness in Mt. Hood National Forest increased by approximately 124,200 acres with the passage of the Omnibus Public Land Management Act of 2009. Three new wilderness areas were designated Figure 4: Salmon River (Clackamas, Roaring River, and Lower White River), and part of the Mt. Hood Wilderness received a special designation to memorialize Richard L. Kohnstamm. Approximately 96.6 additional miles of forest trail are now in designated wilderness. Recreation visitation to the Mt. Hood wilderness in 2009 (at reporting trailheads) was substantially higher than in 2008 or any of the other years. #### Wild and Scenic Rivers The Forest Plan goal is to maintain or enhance all eligible, suitable and designated Wild and Scenic Rivers. The national performance measure for Wild and Scenic River (W&SR) management are: - Outstandingly Remarkable Values (ORV) described - River sections classified - Legal boundary established - Comprehensive River Management Plan (CRMP) completed - Water resource projects evaluated - Water quality protected - ORVs protected - Recreation use managed - Interagency relationships developed None of the Wild and Scenic Rivers managed by Mt. Hood National Forest met all of the criteria in 2009. The ORVs for the five original Wild and Scenic Rivers (Clackamas, Roaring, White, Salmon, and Sandy) have been established. An evaluation of the effects to ORVs was completed and submitted to the Regional Office for every in-stream project in 2009. Nine new Wild and Scenic River segments were designated with the passage of the Omnibus Public Land Management Act of 2009. The total number of miles of river included in this designation is 81 miles, and includes portions of the following rivers: Collawash, Eagle Creek, East Fork Hood River, Fifteenmile Creek, Fish Creek, Middle Fork Hood River, South Fork Clackamas River, South Fork Roaring River, and Zigzag River. #### Cultural Heritage The Forest Plan goal is to locate, protect, maintain and enhance prehistoric and historic sites, buildings, objects and antiquities of local, regional or national significance. Significant (National Register eligible) historic buildings and structures are maintained, stabilized, and repaired according to historic preservation standards, in consultation with the State Historic Preservation Office (SHPO). In 2009, the Forest began development of a historic property management plan for the Mile Bridge tract, now managed as a National Register eligible historic Figure 5: Mt. Hood as seen from Cloud Cap Inn district. Historic preservation efforts focused on Timberline Lodge, Cloud Cap Inn and Bagby Guard Station. There were no new nominations to the National Register of Historic Places. Interpretation, education, and volunteerism are three typical methods used to facilitate public involvement in the Heritage program. Volunteers from Oregon Archaeological Society participated in the Camas Prairie Archaeological Testing Project and continued participation in the Site Stewardship Program designed to ensure that particularly vulnerable prehistoric sites receive periodic monitoring and condition assessment. # **Built Capital** Built capital is the infrastructure (roads, trails, recreational facilities, etc) that supports the flow of goods and services. # Access and Travel Management The Forest continues to advance toward the goals of the Forest Service Roads agenda. The size of the Forest's transportation system is decreasing. The Forest is maintaining or improving mainline road system while decommissioning or closing unneeded roads. In 2009, approximately 50% of our 3,241 mile road system is either closed to public access or classified as "available for closure or
decommissioning". The priority in road decommissioning continues to be roads in unstable geological areas or roads with unacceptable environmental impacts. Due to the high cost of road decommissioning, the Forest focused efforts on storm proofing and closing roads, rather than decommissioning a few roads at a high cost. The Forest is maintaining or improving 363 miles of our mainline road system. # Campgrounds & Ski Areas The Forest Plan goal is to provide developed recreation sites designed to meet user's needs, interests, and equipment and are maintained to a level expected by the users. Campgrounds on the Forest fill a social and economic niche that many long-time visitors appreciate. That user group, however, is not expanding as originally projected, and may be decreasing. Based on current and predicted use patterns and interest, the Forest has more developed camping capacity than demand. Visitation and utilization data were reported by permit holders for concessionaire managed campgrounds in 2009. The Highway 26 and Clackamas River Complex campgrounds had their most profitable year to date. The highest mean occupancy level in 2009 was 46% at Hoodview Campground (Timothy Lake). The campground with the second highest occupancy level was Trillium Lake at 45% occupancy. Both of these campgrounds had mean occupancy over 60% in 2008. At the other end of the spectrum, Riley Horse Camp, Summit Lake, and McNeil Campgrounds had mean occupancy levels of 9%, 10%, and 11%, respectively. Use of the Forest's five alpine ski areas during the 2008-2009 seasons was 15% lower than during the previous season, mirroring the regional trend which showed an overall 15% decrease in skier visits. Overall, the annual snowpack on Mt. Hood was slightly below normal. Despite a slight drop in visitation from the previous year (less than one percent), Mt. Hood Ski Bowl became the most visited ski area in Mt. Hood National Forest with a total of 411,930 visits, according to the Pacific Northwest Ski Areas Association 2008/2009 Annual Visitation Report. Mt. Hood Meadows had 395,140 visits, a 22% decrease. Timberline reported 271,415 visits, a 15% decrease. Cooper Spur reported only 4,532 visits, a substantial 79% decrease in use from the previous year. Summit Ski Area provided no report for the season. #### Trails The Forest Plan goal is to manage and maintain trails for a variety of uses and experiences consistent with public demand. The Forest currently has 977 miles of trails Forest compared to the projection of 1,560 miles during the second decade of the Plan. The Forest Plan also projected an 74 average of miles trail construction and reconstruction per year. Appropriated trail construction Figure 6: Trail sign near Timberline Lodge funding has diminished, and the actual average accomplishment for the Forest is considerably less. In 2009, a contract was awarded to reconstruct 0.8 miles and construct approximately 1.1 miles. Americorps crews from the Northwest Service Academy continued construction of 2.5 miles of new hiking/biking/cross-country ski trails around the Village of Government Camp. The trails are part of the Government Camp Master Trails Plan funded by the Government Camp Tax Increment Financing District. # **Natural Capital** Natural capital is the stock of resources that ecological systems generate as diverse streams of valuable products and services in the future. Natural capital may also provide services like recycling wastes and erosion control. Since the flow of services from ecosystems requires that they function as whole systems, the structure and diversity of the system are important components of natural capital. #### **Timber** The Forest Plan goal is to sustain ecological conditions to provide a continuing supply of forest products and a positive economic return. The Forest is striving to provide a predictable level of forest products to the regional economic systems. The Forest Plan, as amended, identifies about 40 percent of the Forest as "matrix" lands. Within the total Forest matrix allocation, there is approximately 183,000 acres or 17 percent of the Forest land base is "timber emphasis," wherein the primary objective is timber production. For the remainder of matrix land outside of timber emphasis designation, vegetation management is still a major activity, however, timber management is undertaken primarily as a means to meet other resource objectives (e.g., scenic viewshed, deer and elk winter range, special emphasis watershed, etc.). In 1995, the Forest Plan, as amended, set a Probable Sale Quantity (also called PSQ, which represents the amount of timber volume that could be sold in a given year) of 64 MMBF. Litigation and annual funding are two most constraining factors that affect attainment of the PSQ. In FY 2009, the budget allocation scheduled the Forest to offer for sale approximately 29.9 million board feet (MMBF) (46.7% of PSQ). The Forest successfully offered for sale approximately 30.8 MMBF and awarded a total of 34.1MMBF. The majority of this volume was offered using stewardship contracts through "best value" bid procedures. The contracts resulted in a revenue source which will accomplish restoration projects such as fuel reduction, road maintenance, road decommissioning, OHV damage repair, pre-commercial thinning and wildlife habitat enhancement. The Forest also made significant progress on planning projects that accomplish wildfire risk reduction objectives and commercial thinning in overstocked plantations. These planning efforts will result in timber sales and stewardship contracts in FY2010 and 2011. Timber and wood fiber production continues to be a principal forest activity. #### **Green Biomass** Offering a predictable supply of green biomass is an important means to promoting alternative energy sources, and is a growing economic interest in the Pacific Northwest. Currently, the Forest makes green biomass available from treatments such as thinning and fuel reduction. Since 2004, the Forest has treated between 400 to 2300 acres (average of 72% of annual timber harvest acres) per year in commercial thinning operations. These treatments can provide a predictable supply of green biomass to the local and regional economies. Since 2007, every timber sale or stewardship contract on the Mt. Hood National Forest has included an option for the contractor to remove green biomass. In addition, the Forest, along with other National Forests has entered into an agreement with the Confederated Tribes of Warm Springs to provide up to 80,000 BDT (bone dry tons) of biomass in support of the Tribe's cogeneration proposal. # **Special Forest Products** Over the past 10 years, the Forest has supplied moderate levels of firewood and Christmas trees to the local communities as well as the greater Portland area. The Forest has also supplied other special forest products for both commercial and personal use. These include boughs for holiday wreaths, greenery for floral arrangements, mushrooms and others such as carving stock and transplants. Due to the adjacent large population and the high value products available such as noble fir boughs, the Forest has one of the largest and most efficient Special Forest Products programs in the Nation. While these products do not contribute relatively large dollar value to the regional economic system, they do provide for a considerable amount of employment for local workers. Future expectations are that Christmas trees, bough harvesting, and firewood opportunities will be limited due to less regeneration harvest occurring on the Forest, while demand for these products increases. In 2009, the Forest sold 6,500 special forest products permits generating over \$109,500 in receipts. # Range Approximately 15% of the total acres on the Forest are in grazing allotments. Issuing grazing permits to local ranchers adds an element of economic viability to ranch operations, while at the same time, the private ranch lands provide essential big game winter habitat which is in critical short supply. These allotments are comprised of a mosaic of grass and shrub lands, meadow complexes, timbered areas, and harvested timber lands. Harvested lands in these allotments generally produce forage for about twenty to thirty years before the overstory canopy (trees) re-grow and again dominate the site. This is called "transitory range". The Forest Plan goal is to provide quality forage conditions for commercial domestic livestock and to prevent unacceptable damage to other resource values. Range objectives were quantified and expressed as an output called "AUMs" (animal unit months). The total current permitted AUMs are 3,684. In 2009, actual livestock use was 1,645 head months. Monitoring of existing vegetation conditions and long-term trends in vegetation are in place on all allotments. These measurements indicate that overall range condition is stable to improving and moving towards Forest Plan objectives. In addition, Forage utilization monitoring studies were conducted on all active allotments to monitor the consumption of the current years forage by both permitted livestock and wildlife. Of the fifteen established monitoring sites grazed this season, twelve sites (80%) met utilization standards and guidelines established. The other three (20%) did not. However, there are concerns over the loss of transitory range due to the decrease in harvest levels, and resulting increase of livestock pressure on riparian areas and heavy recreation use. #### **Minerals** The Forest Plan goal is to facilitate exploration and development of energy and mineral resources while maintaining compatibility with other resource values. The Forest continues to be able to supply high quality rock products to the general public, other government agencies, and for their own use. There are no currently active locatable or leasable mineral developments on the Forest. During 2009, 700 cubic yards of mineral materials
were used by other government agencies, 80 cubic yards were used by the public, and 19,740 cubic yards were used by the Forest. The continuing demands for "landscape rock" are depleting sources of easy accessible loose rock material on the Forest. During 2009, the Forest also assisted BLM with the development of an environmental impact statement that covered geothermal leasing development near the Forest. # STRATEGY C Maintain and enhance the productive capacity of Mt. Hood National Forest to improve the economic well-being of Mt. Hood's communities. This criterion and associated indicators address the Forest's productive capacity for sustainable timber production. The Forest Plan monitors catastrophic changes in the timber inventory as a result of natural disturbances, the level of treatments to enhance growth and health of stands, adjustments in harvest level or land base available for timber production due to land allocation changes, suitability, regeneration success, harvest levels compared to Forest Plan projected levels, and cumulative effects. # **Productive Capacity** The Forest Plan monitors accomplishments of management practices programmed to contribute to future sale quantity. Examples of these capital investments/management practices include reforestation and timber improvement activities which contribute not only to future sale quantity, but to long-term productive capacity, forest health, carbon sequestration, and other resource objectives which help to maintain sustainable conditions. The Pacific Northwest Current Vegetation Survey (CVS), along with Forest GIS layers of land allocations, can be used to estimate the current standing inventory of the Forest and annual rates of growth and mortality. Tree growth rates can be used as estimates of productive capacity. One measure of sustainability is whether the level of timber harvest is considered sustainable in terms of forest growth. Overall annual growth is more than 13 times harvest levels and annual mortality exceeds harvest by a factor of 8 to 1. On matrix lands only, growth is almost 3.7 times the rate of harvest. This indicates that timber harvest is having a very small effect on net productivity while management practices, such as thinning and reforestation, are contributing to increasing growth rates. Stand improvement activities are monitored as they contribute to the future allowable sale quantity and increase long-term capacity of forest land by promoting healthy stand conditions and growth. They include pre-commercial thinning, pruning, and fertilization. As of 2009, the Forest has approximately 9,000 to 13,000 acres in need of stand improvement. Under current funding levels, the Forest is able to treat approximately 1500 to 2000 acres, annually. In FY 2009, the Forest accomplished 1,792 acres of pre-commercial thinning. The Forest continues to fund pre-commercial thinning treatments primarily through the use of Stewardship Contracting authorities and Payments to the Counties funding. # STRATEGY D Protect, maintain, and enhance the soil and water resources of Mt. Hood National Forest. Lincoln, Boxshall and Clark (1982)¹ define an ecosystem as: "A community of organisms and their physical environment interacting as an ecological unit." These criteria include physical environmental indicators that are related to soil, air and water characteristics. Physical environmental indicators are essential in tracking sustainable forest management because the maintenance of appropriate levels of soil oxygen, nutrients, moisture, and organic matter is key to the long-term productivity and resilience of forest ecosystems. # **Water Quality** Many factors – changing climate, wildfires, insect outbreaks, timber harvest, roads, and even urban sprawl – are influencing water supplies from forests. The Forest Plan goal is to protect and maintain the character and quality of water, providing for long-term sustained production resulting in favorable flows from the watersheds on the Forest. In addition, unique and the valuable characteristics of floodplains, riparian areas, riparian associated and aquatic ecosystems are to be protected. The purpose of monitoring is to assess Forest Service compliance with the Clean Water Act, to collect data on water quality trends, and to monitor the effectiveness watershed restoration work. Figure 7: Salmon River. # Water Quality Trends Trend monitoring is conducted to monitor water quality (temperature, turbidity, pH, etc.) over time and to assess whether the Forest Plan standards and guidelines are maintaining or improving water quality. Monitoring funds were used for water temperature trend monitoring on a total of 35 sites: Zigzag Ranger District (16 sites), Barlow Ranger District (5 sites), and Clackamas River Ranger District (14 sites), with the objective of gathering data on existing water temperature conditions, water temperature recovery in certain watersheds, and compliance with State water quality standards for temperature. Water temperature _ ¹ Lincoln, R.J., G.A. Boxshall, and P.F. Clark. 1982. A dictionary of ecology, evolution and systematics. Cambridge University Press, Cambridge, UK. monitoring was not carried out on other portions of the Forest in 2009 due to funding constraints. A majority of the streams monitored did not meet one or more of the DEQ water temperature standards, even though these same streams in most cases provide very good water quality for fish. A record-setting heat wave affected Oregon and most of the Western U.S. in 2009. This extremely warm weather may have resulted in some of the streams exceeding the DEQ water temperature standards. There is some uncertainty if the streams that do not meet one or more of these standards would have met these standards prior to the onset of various resource management activities. The Clackamas River and Eagle Creek continuous water monitoring stations record water quality at the Forest and to provide the downstream water providers an early warning of turbidity problems. For 2009, water quality was found to be very good at these sites. # Clean Water Act Compliance With continued implementation of Best Management Practices, watershed restoration, and the Forest Plan (as amended), water quality and watershed conditions are expected to be maintained and in some areas show an improving trend. #### Cumulative Effects The Forest plan relies on cumulative effects analyses to determine watershed conditions, to provide us information about the watershed's ability to resist and recover from disturbances and to filter and maintain water quality. During 2008 and early 2009, a watershed cumulative effects analysis was completed for the Re-thin Environmental Assessment on the Clackamas River Ranger District and the Lake Branch Thin on the Hood River District using the Aggregate Recovery Percentage (ARP) methodology. A non-ARP cumulative effects analysis was completed for the 2009 Forestwide OHV management plan-Clackamas River Road decommissioning, the 2009 Clackamas Restoration Projects, and the North Fork Mill Creek Restoration Project Environmental Assessment. The watershed cumulative effects analysis for all the above listed projects which included an ARP analysis indicates the post-project ARP would be within the guidelines set forth by Forestwide standard and guidelines FW-063 and FW-064 pertaining to cumulative watershed effects. #### **Stream Function & Condition** Federal lands, on average, comprise from two-thirds to three-quarters of the total land ownership in these river basins, thereby emphasizing the critical importance of the aquatic habitat conditions on the Forest and the important role the Forest provides for the conservation and restoration of aquatic species. Forest Plan Standards and Guidelines, as amended by the Northwest Forest Plan, were designed to maintain or enhance aquatic habitat complexity and fish habitat capability. Watershed scale monitoring is completed through two programs: the Mt. Hood Stream Inventory Program and the Aquatic and Riparian Effectiveness Monitoring Program. The Forest's Stream Inventory Program collects information on stream conditions, including habitat typing (e.g., pools, riffles, glides), riparian and upland vegetation, management activities near the stream, streambed composition, and fish species presence. This provincial program, which includes the Gifford Pinchot National Forest and Columbia River Gorge National Scenic Area, evaluates trends and determine if the Forest is meeting aquatic habitat standards and guidelines. In order to complete Level II stream inventories in a strategic manner at the river basin scale, inventory emphasis shifts from year-to-year amongst the three Forest Service administrative units. In 2009, stream inventories sampled Clear Creek (Barlow Ranger District), McCubbins Gulch, East Fork Hood River, and Dinger Creek. Based on stream inventory results, the aquatic habitat conditions for streams and rivers on the Forest appear to be stable and improving. Continued aquatic restoration projects, implemented in collaboration with partners and stakeholders, will further improve conditions and ensure an abundance of high quality habitat on the Forest for conservation and recovery of many fish species in the local region. The Aquatic and Riparian Effectiveness Monitoring Program (AREMP) is a multi-federal agency program developed to assess the effectiveness of the Aquatic Conservation Strategy (ACS) of the Northwest Forest Plan. The objective of the ACS is to maintain or restore the condition of watersheds in the Northwest Forest Plan area. Watersheds are sampled each year over a 5-year rotation. In 2009, sampling included surveys of Middle Fork of the Bull Run River on the Zigzag Ranger District and Pot Creek on the Clackamas River Ranger District. The evaluation of this data is still under refinement. Information and annual summary the **AREMP** is found reports for program at:
http://www.reo.gov/monitoring/reports/watershed/aremp/welcome.htm. A preliminary assessment of the first 10 years of the Forest Plan indicates that overall aquatic habitat conditions have gradually improved between 1994 and 2004 (Gallo et al, 2005). This monitoring has shown that road densities are decreasing slightly and riparian and upslope vegetative conditions are gradually improving. There were very few areas where negative habitat trends were discovered, and those areas included watersheds that had recently experienced large forest fires. A 15-year assessment of watershed condition and trends is expected to be completed fall of 2010. # **Soil Productivity** The Forest Plan goals are to protect, maintain and restore soil productivity, and to stabilize or restore damaged or disturbed soil areas. Standards, specific to maintaining physical soil quality properties, require that no more than 15% of an activity area is to be in a degraded condition from the combined impacts of compaction, displacement, or severe burning. Organic carbon is an important energy source for the microbiological component of the soil ecosystem. Organic matter in the form of large wood on the forest floor or smaller woody material, including the litter layer, are important sources of organic carbon. Maintenance of carbon cycling through conservation of large wood material is addressed through the standards identified for wildlife habitat needs. Soil monitoring is guided by two needs. First, to document cumulative effects, and second, to evaluate planning areas and specific stands proposed for timber harvest activity so that effects can be better predicted. In 2009, eight harvest units were monitored for detrimental soil impacts from ground based logging systems and fuel treatments. All were within the standard, even though many units had previous harvest activity. Six planning units were monitored to Figure 8: Near timberline on Mt. Hood evaluate existing detrimental soil conditions so that an accurate prediction of impacts could be made. All six had been clearcut decades ago and are proposed for commercial thinning. Existing detrimental soil conditions ranged from 1-3%. Monitoring results in 2009 as compared to previous years continues to suggest that substantial progress has been made with regard to the detrimental soil condition standard. # STRATEGY E Contribute to conservation of diverse native plant and animal populations and their habitats in the Mt. Hood National Forest. Maintaining native species is a fundamental tenet of any conservation effort. Diversity is a function of the relationship between system structure (species composition, genetic diversity, age classes, deadwood and vegetation patterns at various scales, etc.) and system dynamics or processes (nutrient cycles, interactions among species, etc.). The first signs of environmental stress usually occur at the population level, affecting especially sensitive species. If there is sufficient redundancy, other species may fill the functional niche but may not be an efficient backup. These early warning signs detect ecosystem-level change. This criteria looks at the maintenance of viable populations of native species, including the processes that define interactions between them and their habitat. Monitoring and understanding changes in vegetation composition, diversity and structure are of particular importance and could serve as an indicator of ecosystem change. # **Vegetation Composition and Pattern** All seral stages (early, mid and late) and their distribution on the landscape provides information on the diversity and pattern of land cover types that provide wildlife habitat, filter and maintain water quality, and provide connectivity. Fifty-nine percent of the Forest is in the mid-stage of stand development. This condition is due to extensive stand-replacing wildfires early in the last century and forest management where stands which regenerated 30 or more years ago have grown to plantations of commercial size. Dense mid-seral stands on the eastside and backlog of stands needing some level of stocking control, such as precommercial thinning, raise concerns that these stands will contribute to the potential for large disturbances such as wildfire, windthrow, or insect outbreaks. This concern extends to the plantations within the Northwest Forest Plan-designated Late Successional Reserves. The strategic intent of the Forest is to maintain the health and vigor of the mid-aged stands (both natural and man-made) to insure long-term productive capacity of the forest, to improve growth rates thereby moving these stands towards conditions more reflective of historic distributions while balanced with social and economic needs, and to protect investments already made in forest plantations. Early seral distribution is also a concern. With fire suppression and reduction in timber harvest, there has been a decline in "quality" early seral habitat. Quality early seral provides a richness of structures, biodiversity, and a diversity of processes. Many species are tied to all seral stages and are directly tied to some components of early seral. The limited forage availability for deer and elk populations is becoming a concern on the Forest. # **Population Viability** The National Forest Management Act requires that "...fish and wildlife habitat be managed to maintain viable populations of existing...species in the planning area." To ensure this, the regulations direct that habitat must be provided to support a minimum number of reproductive individuals and habitat must be well distributed so that those individuals can interact with others within the planning area. #### Fish Habitat The Forest Plan goals for the fisheries program are to maintain aquatic habitat quality, as well as diverse and sustainable fish populations. The aquatic resources monitoring program is the starting point to track the status of populations of concern, such as the Endangered Species Act (ESA) listed fish; develop long term data sets on migration and population trends; and for conducting effectiveness monitoring for restoration projects designed for habitat recovery and long term sustainability of fish populations. Federally-listed fish species on the forest include steelhead, coho, Chinook, and bull trout. The fish population or habitat monitoring information is used to better understand life history stages of different populations as well as to focus recovery efforts for listed ESA or sensitive fish species. Forest Service personnel, in collaboration with government, non-government, and Tribal partners, monitor fish production in each basin. In 2009, salmon, steelhead, bull trout and coastal cutthroat populations were monitored in the Clackamas, Hood River, and Sandy River basins. Five projects are ongoing: 1) Coastal cutthroat trout population monitoring looking at genetic diversity, 2) Smolt production monitoring in the Sandy River Basin for population estimates. 3) Sandy Basin spring Chinook spawning surveys, 4) the Clackamas River bull trout re-introduction: food web baseline assessment to evaluate the effects of bull trout re-introduction on anadromous and resident salmonids and other key species in the upper Clackamas River basin, and 5) the Hood River bull trout population life history monitoring. Monitoring results indicate that the overall abundance of anadromous fish and bull trout is quite low in many of the stream and rivers on the Forest. Hood River bull trout populations are considered to be at high risk of extinction. The actual utilization of habitat by various fish species is far below the overall productive capacity of rivers and streams on the Mt. Hood National Forest. #### Wildlife Habitat The Forest Plan goals for the wildlife program are to protect, maintain or enhance habitat quality and maintain viable populations of native and desired non-native wildlife species. Many wildlife species depend on either or both late and early seral habitats. A continuous supply of early seral habitat well-distributed across the landscape would be optimum to sustain good populations of early seral obligate species. With the emphasis on protecting late seral habitats, invasion by noxious weeds, normal succession, effective fire suppression, and the changes in timber harvest practices, quality early seral habitats are becoming increasingly more valuable and in demand by wildlife. Given the emphasis on managing the land for late seral habitat, the expected trend is a shift of the federal landscape to mature and late seral habitats creating a greater need for quality early seral habitats. The Northwest Forest Plan manages for late seral habitats across the landscape in designated Late Successional Reserves, Congressionally Withdrawn Areas, Riparian Reserves, and designated Wilderness Areas and most wildlife biologists believe that late seral habitat is sufficiently protected by these designations to sustain late seral species. In the Forest Plan, harvest activities were expected to help maintain stable populations of deer and elk by providing a consistent quantity of foraging areas and early seral plant communities. With a reduction in regeneration harvest, suppression of fire and dense nature of the habitats in the western Cascades, less forage is being produced for deer and elk making forage a limiting factor on the Forest. The eastside districts are increasing some forage areas with underburn treatments and wildfires when they occur. At present, biologists predict populations are stable based on anecdotal evidence. In addition, road densities in winter range in most watersheds are above the standard suggested by the Forest Plan. Road densities are barriers to connectivity and the reduction of roads increases the usability of habitat by deer and especially elk. Other habitat concerns for wildlife include increasing pressure on unique or sensitive habitats from recreation uses, roads and grazing.
Martens and pileated woodpeckers are ecological indicator species for mature and old growth coniferous forests on the Forest. Late Successional Reserves, Riparian Reserves, and designated Wilderness Areas are providing sufficient habitat and anecdotal evidence indicates the populations appear viable. Remote camera and tracking surveys have shown good populations of marten. Snag monitoring on Clackamas River Ranger District provides anecdotal evidence that populations of pileated woodpeckers seem adequate. High elevation habitats have been used for breeding for species such as gray-crowned rosey finch, horned larks, American pipits, American marten, and wolverine. For some species, such as wolverine, this was a last strong hold for their populations. Back-country use and high elevation recreation are intruding more and more into these habitats placing an increasing pressure on these high elevation species. These stresses create a concern for the sustainability of some of these species. An increased effort should be made to monitor these populations and to limit the amount of intrusion. Riparian habitat has the highest wildlife use of all habitats on the Forest. With the practice of managing for Riparian Reserves, this habitat is well protected and there should be very little concern for sustainability of species requiring this habitat. # **Special Habitats** Within the Mt. Hood National Forest, there are a variety of sub-dominant plant communities that enrich the forest with complexity and diversity. They provide important habitat to wildlife species that may not be common elsewhere on the Forest, are often sought after recreational areas, and some, like the huckleberry, have cultural and socio-economic values to local Tribes for which the Forest has trust responsibilities. These important plant communities include huckleberry, aspen, whitebark pine, open oak and pine-dominated habitat, and open grass/forb meadows. All of these plant communities are declining in quality and/or quantity due to conditions such as overstocked forest stands, forest encroachment, and/or insects and disease created through fire suppression, climate change, and past management actions. Other special habitats include wetlands, caves, mines, cliffs, and talus slopes which are home to many sensitive plants and animal species. Human disturbances, including recreation, roads, encroachment by invasive plant species and grazing, are major impacts on these unique habitats and sensitive species. In addition, climate change may provide an additional stress which can eliminate these species altogether. ## **Species of Concern** The Forest Plan goal for wildlife species of concern is to protect or enhance habitat for threatened, endangered and sensitive animals and to assist with their recovery. For peregrine falcon and bald eagle, the goal is to re-establish these nesting species on the Forest. #### Bald Eagle The USDI Fish and Wildlife Service delisted the American bald eagle in 2007. The Forest Plan designates bald eagle areas on the Forest for existing and established winter communal roost areas. In 2009, monitoring show nesting efforts were not successful for the Rock Creek Reservoir eagle pair, probably due to high public use in the area. In addition, a new nest was created in a location with less public traffic in hopes that it will be utilized in the future. The Clear Lake nest site was active in 2009 but not tracked. #### Peregrine Falcon The USDI Fish and Wildlife Service delisted the peregrine falcon in 1999. The Forest Service will continue to manage the peregrine as sensitive species. For the peregrine, potential nesting habitat occurs on all Ranger Districts. In 2009, monitoring show nesting efforts were successful for the two known peregrine falcon nest sites. #### Northern Spotted Owl The northern spotted owl is listed as threatened by the U.S. Fish and Wildlife Service. Management of spotted owls is outlined in the Northwest Forest Plan Standards and Guidelines and includes designated 100 acre Late Successional Reserves (LSRs) for known owl sites. An interagency demographic study sampling spotted owl populations across its range has replaced monitoring on individual Forests. To date, the demographic study reports a 2.8% decline per year in the spotted owl population for Oregon. In 2009, a survey was done along the proposed Palomar pipeline project area and documented a total of 29 owls. #### Lynx Lynx is listed as threatened in Oregon by the U.S. Fish and Wildlife Service. The Forest currently has no mapped lynx habitat. Based on trapping records, the Oregon Department of Fish and Wildlife feels this species has been extirpated from Oregon or never existed in the State. ## **Threatened, Endangered and Sensitive Plants** Sensitive plant species associated with non-forest habitats, such as meadows, grasslands, rock outcrops, and other natural openings, continue to be vulnerable to impacts from invasive plant encroachment, livestock grazing, off-road vehicles, and recreational activities. The Regional Forester's Sensitive Species List for plants was last revised January 2008. The list includes 114 vascular and non-vascular plant lichen and fungi species that are documented from, or are suspected to occur on the Forest. There is one federally-listed Threatened plant, *Aquatilis howellii*, which is found in the Columbia Gorge and suspected to occur on the Hood River District. Sensitive plant inventories have been conducted for all ground-disturbing activities, and mitigation measures have been effective in maintaining the integrity of sensitive plant sites. From 2000-2006, monitoring efforts were focused on nonforest habitat sensitive plant species. Data collected will be used to develop management recommendations and/or conservation strategies for species that appear to be at risk. ## **Ecological Legacies** Ecological legacies, such as dead wood (remnant snags, large down woody debris), caves, nutrient cycles, seed banks, genetic diversity and habitat connectivity, are important components of the environment that persist through multiple phases and successional changes in an ecosystem. Sustainable timber harvesting does not cross a certain threshold of biological legacies while removing timber and focuses on what it leaves behind than what it takes. These long-term strategies and more ecologically-based management practices are being incorporated in vegetation prescriptions allowing natural processes and legacies to maintain balance in a complex but still fairly predictable ecosystem. #### **Dead Wood** The Northwest Forest Plan provides standards and guidelines for snags and down woody material to meet wildlife habitat needs and maintenance of organic matter for soil productivity. Current monitoring data indicate that snag retention levels are meeting standards and guidelines and are increasing over time and that wildlife trees are being used by cavity users. ## **Genetic Diversity** Genetic diversity is fundamental for populations of forest-dwelling organisms to be able to adapt to changing environmental conditions. The Forest Plan direction is to maintain genetic diversity of forest stands and to maintain forest health through genetic resiliency thus reducing impacts of disease, animals, insect, or climatic damage. This indicator can be used to address issues related to effects of forest management on genetic diversity. Current reforestation practices ensure genetic diversity by planting appropriate species, and additional species diversity is gained from natural regeneration. ## **Habitat Connectivity** The Northwest Forest Plan has been designed to provide connectivity of late successional species along the Cascades. The Plan should adequately sustain populations and ensure genetic viability across the Cascade Range. However, this does not address a concern for connectivity across high-traffic roads, especially for those species whose population drops below a critical threshold. The Highway 26 & 35 corridor is the road system of highest concern on the Forest. Many species are sensitive to vehicle traffic and just the traffic alone would act as a barrier. Those individuals that try to cross are more than likely to be hit in the road. The road system, including the possibility of installing wildlife crossings, is currently being reviewed. ### STRATEGY F Protect, maintain, and enhance the health of Mt. Hood National Forest's ecosystems, watersheds, and airsheds within the context of natural disturbance and active management. These indicators were based on maintaining integrity of ecological systems to provide sustainable forests. #### **Disturbance Processes** Ecosystems are dynamic, and as such, disturbances and stresses are part of them. It is important to note those disturbances and stresses that are either foreign to or outside the range of the disturbances and stresses with which the ecosystem evolved. Such disturbances and stresses pose a serious threat to the sustainability of a given ecosystem because they may exceed the ability of the ecosystem to accommodate them without major changes in the structure, composition, and/or function components. When ecosystems are pushed too far, there is a loss of natural resiliency, ecosystem capacity, and biodiversity. Disturbances impact all aspects of ecosystems at a landscape level including successional pathways, carbon balances, nutrient cycles, water quality and quantity, habitat and forage availability, scenery, availability of products, and economic values of products. These criteria and indicators provides us with information about the landscape's ability to increase or decrease the effects of fire and wind on the Forest; to provide habitat for different kinds of wildlife including rare species; to resist and recover from disturbances; to filter and maintain water quality; and to provide information on the diversity and pattern of land cover types. It also helps us to look at
the implications of vegetation management actions including road building on attaining landscape-desired conditions. These criteria and indicators focus on the processes, structures and composition that influence landscape patterns and distribution. #### Wildfire/Prescribed Fire Fire is a dominant disturbance process that has influenced vegetation at many spatial scales over the past several centuries. At a broad scale, fires influenced vegetation patterns by affecting the distribution of stand types and seral stages across the landscape. Intensity and frequency of fires can affect composition and structure of plant communities at a finer scale. Current vegetation pattern and plant community dynamics have been altered by fire suppression for the last 60-100 years. In addition, climate change is predicted to increase the vulnerability of some ecosystems to fire due to warmer drier conditions, increased fuel loadings from increased insect outbreaks. This raises sustainability questions about what are the effects of the current fire regimes and management activities towards achieving desired vegetation and landscape patterns. The overall goal of the fire management program is to provide fire protection capability to support attainment of land and resource objectives. Fire protection and fuel treatment objectives are identified in the Forest Plan for monitoring. The plan estimates that there should be no increase in the number and acres of human-caused wildfires (56 fires and 408 acres/year based on five years of data) with implementation of standards and guides. To date, the number of human-caused fires and acres burned are below Forest Plan estimates. The 2009 fire season, a total of 57 fires were reported, 2 were lightning ignitions and 55 were human caused. Reported burned acres totaled 8.3 acres. The occurrences of large lightning fires in wilderness and remote areas of the Forest over the last few years have increased the five year average of acres burned to 1,586 acres. Changes in vegetative conditions have altered disturbance regimes, particularly on the drier eastside of the Forest, resulting in the potential for larger, more severe fires that are outside the historic range of variability. Changes in stand structure, species composition, and accumulated fuels have predisposed extensive areas to insect infestations, disease, and high-intensity wildfires that may threaten nearby communities, watershed values, and key ecological components. Plant communities that became adapted to low intensity, frequent fires are less able to survive, and recover from, high-intensity (stand replacement) fire. It is expected that resource damage and value lost will increase. These altered disturbance regime areas are specifically targeted by the 10-Year Cohesive Strategy, Mt. Hood's 5-year strategy for integrating fuels and vegetation treatments, and the 2008 Strategic Framework for Responding to Climate Change. Specific objectives of these strategies include modifying fire behavior to protect homes, infrastructure and municipal watersheds in the Wildland Urban Interface (WUI), and ecologic restoration of stands and landscapes outside of the WUI, such as thinning of forests to increase tolerance to drought and resistance to wildfire or insects expected under a changing climate. In 2009, the Forest completed 2,819 acres of hazardous fuels treatments, exceeding the Forest Plan's 800-acre annual estimate. The Healthy Forest Restoration Act (HFRA) passed in 2003, the related Healthy Forest Initiative (HFI), and the Tribal Forestry Protection Act of 2004 developed new administrative and legislative tools to help restore healthy ecosystems and assist in executing core components of the National Fire Plan that will accelerate treatments designed to restore healthy ecosystems. In 2004 and 2005, the Forest started planning projects under HFRA and HFI. The Forest is continuing to seek markets for biomass and small-diameter material. Development of local co-generation facilities and mobile chipping plants are examples of several processes that will help to make biomass utilization a reality. The Forest has prioritized planning and implementing landscape scale fuels and vegetation management projects entering into cooperative efforts with the State, tribal governments and local landowners. Fire regime condition classes (scheduled for 2011 update) and forest vegetation and fuels data updates are ongoing. This will greatly enhance our ability to quantify and monitor many deteriorating conditions in these ecosystems, including how current fire regime and management activities are affecting vegetation and landscape patterns, how to incorporate fire back into the ecosystem, and how Forest Service efforts in stewardship, partnerships, education and training are contributing to restoring forest health and safety. This effort should provide fire managers with the landscape-scale information that will help improve strategic decision-making in both the prescribed fire and wildfire arenas. ### Harvest/Silviculture The vegetation patterns or mosaics help us to look at the implications of vegetation management on attaining landscape-desired conditions. Harvest, another dominant disturbance process, influences vegetation patterns by affecting the distribution of seral stages across the landscape. Harvest also can influence successional processes by alteration of stand structures and composition. Over the last decade, there has been a decline in timber harvest. Less than one tenth of one percent of the land base is being treated by harvest to meet various objectives. Vegetation management is prioritized towards restoration treatments such as reducing fuel hazards, improving wildlife habitat and maintaining forest health. There also has been an overriding shift from regeneration harvest to commercial thinning. This raises sustainability questions about the effects of management activities on achieving desired vegetation and landscape patterns. Harvesting continues to occur at a rate below the annual probable sale quantity. In 2009, harvest occurred on 694 acres, with the majority of the harvest, 61%, occurring on lands designated as matrix lands in the Northwest Forest Plan and a lesser amount of harvest in the riparian (8%), administratively withdrawn areas (8%), and late successional reserves (23%). Thirty-nine percent of harvest occurred on the Mt. Hood Forest Plan land allocation C1- timber emphasis with 52% occurring on B allocations where timber production is a secondary goal. Commercial thinning was the harvest method on 88% of the acres, selection harvest on 3%, and shelterwood harvest on 9% of the acres. Current and potential future forest health issues continue to be a concern on the Forest. This includes a backlog of up to 13,000 acres of overly dense, young stands in need of precommercial thinning; large acreages of changed ecological conditions on the eastside as a result of fire suppression and increasing levels of insect damage and mortality. Recommendations are for more thinning to improve stand conditions in both the precommercial and commercial size classes, and salvage harvest to reduce accumulations of hazardous fuels in select locations. #### Noxious Weeds Noxious weeds or invasive plant species are recognized as a major threat to native plant communities especially on disturbed sites and grasslands. Invasive plants displace native vegetation, alter species composition of forests and rangelands, reduce the productivity of desired commodities, reduce species diversity, and adversely affect recreational quality. The Forest Plan goal is to control noxious weed infestations and prevent their spread through a combination of efforts including prevention, education, inventory, treatment, and monitoring in accordance with the Record of Decision (ROD) and Final Environmental Impact Statement (FEIS) for Site-Specific Invasive Plant Treatments for Mt. Hood National Forest and Columbia River Gorge National Scenic Area in Oregon (March 2008) and the Final Environmental Impact Statement (FEIS) and Record of Decision (ROD) for Preventing and Managing Invasive Plants in the Pacific Northwest Region (October 2005). The Mt. Hood National Forest cooperates with the Oregon Department of Agriculture, Wasco County and Hood River County Weed Departments, Bonneville Power Administration, Garlic Mustard working group, the Columbia Gorge Cooperative Weed Management Area (CGCWMA), the Four County CWMA, the Nature Conservancy (TNC), Clackamas River Basin Council, and the Confederated Tribes of Warm Springs to conduct inventories, treat noxious weeds and coordinate weed education. Monitoring is conducted on weed control treatments, known infestations, and new infestations. A total of 558 acres of noxious weeds were treated on the Forest in 2009 mostly with herbicides and some hand-pulling. Chemical control methods have been effective in reducing the number of noxious weeds. Biological controls for the knapweeds have had modest impact thus far. Mitigation measures to reduce the risk of noxious weed establishment are being implemented for all ground-disturbing activities including those activities not considered ground-disturbing such as weed-free hay and straw for backcountry horse use. Weed-free forage notification signs were purchased for installation along Forest roads and highways in 2010. Education efforts include Weed Awareness Week, information kiosks on invasive species at strategic locations, and participation on the Sandy Basin Weed Watcher Early Detection training. New infestations are still occurring. Surveys continue to locate satellite populations of hawkweed associated with the primary infestation along the Big Eddy-Ostrander transmission line from Lolo Pass west to the Forest boundary. A roadside inventory of Bull Run watershed identified Herb Robert (*Geranium robertianum*) and Reed canary grass (*Phalaris arundinacea*). A relatively new
invader, Garlic Mustard (*Alliaria petiolata*), which has established itself in parts of the Columbia River Gorge and some Portland parks, has the potential to spread on to the Forest and is being closely monitored. A thorough, systematic inventory of noxious weeds across the Forest has not been completed to quantify the full extent of the spread of known untreated sites. Observations have noted increasing populations of diffuse knapweed (*Centaurea diffusa*) along Hwy. 26 and Hwy. 35 corridors on the Forest. Observations also indicate non-native Yellow and Orange Hawkweed (*Hieiracium auriantiacum* and *Hieracium floribundum*) may be spreading. Satellite populations have been detected up to 10 miles from the one main population on Zigzag Ranger District. Untreated or sporadically treated spotted and diffuse knapweed in the Lake Branch area (1310 road system) of Hood River Ranger District continue to flourish. ### Forest Insects and Diseases Disturbances related to forest insects and diseases are mapped during the annual Aerial Detection Survey conducted by the Forest Health Protection group. For the last several years, bark beetle outbreaks have caused a significant amount of tree mortality on the Mt. Hood National Forest and adjacent lands. Approximately 181,000 acres on the Forest (16%) and an additional 127,000 acres including adjacent lands, namely the Warm Springs Reservation have been affected. The primary species affected have been lodgepole pine and true firs. Mortality from mountain pine beetle is declining since the outbreak has killed most of the host habitat. Still, there are areas of lodgepole pine likely to killed within the next year or two such as near Summit Lake and Government Camp. In 2009, there has been a marked decrease in acres affected from balsam woolly adelgid in true firs, as well as declines in larch casebearer, and western pine beetle. In addition, 40 year-old ponderosa pine stands on the eastside are becoming imminently susceptible to bark beetle attack due to high stocking densities. Significant amounts of tree mortality have accumulated over the last ten years causing increased concern over hazardous fuels. Most of the beetle killed lodgepole have been dead for several years and therefore the rate of falldown will be increasing. The 1983-1993 western spruce budworm (Choristoneura occidentalis) outbreak is now contributing to increased fuel loadings as trees have fallen. Field surveys were completed for both the high elevation whitebark pine, and the northern most populations of sugar pine located on the Clackamas River Ranger District. In summary, both the whitebark pine and sugar pine populations are exhibiting severe decline due to a combination of a non-native pathogen, white pine blister rust, and the mountain pine beetle. It is recommended that the Forest pursue restoration activities and reestablishment of new populations with blister rust-resistant seedlings. ## Hillslope Processes/Geologic Resources The primary geologic hazard on the Forest is landslides. The types of landslides common on this forest are: earthflows, slumps, debris flows, debris slides, and rockfall. These landslide types can be natural or human-induced. Landslides have some beneficial effects, such as delivering large woody debris to streams, but can also deliver unwanted fine sediment to streams. The Forest Plan direction is to maintain hydrologic and physical balances to prevent reactivation or acceleration of large slow-moving earthflow areas. The desired conditions for these areas are forest stands of varying age classes, mostly greater than eight-inch diameter trees, with management activities designed to maintain long-term stability. Measurements at established earthflow monitoring stations have been made annually since 1993 and are showing movement rates ranging from zero to several feet per year. Much additional effort is still needed in verifying the scientific validity of the standards and guidelines for earthflows, particularly those covering hydrologic recovery. Additional efforts in 2010 should be focused on continuing the review of the risk classification system for earthflows, and continuing the field verification of the earthflow and landslide boundaries. During 2009, there were no harvest units or roads constructed on earthflow (B8) land. ## Climate Change Climate change is one of the greatest challenges to sustainable management of forests and grasslands and to human well-being because rates of change will likely exceed many ecosystems' capabilities to naturally adapt. Climate change adds an additional 'stress' to ecosystems that further alters ecosystem processes, water availability, species assemblages, and the structure of plant and animal communities and their interactions. Increased wildfire severity and area burned, large-scale bark beetle infestations, and changing water regimes, have been driven in part by changing climate. Land use change, management practices, and disturbances on forests and grasslands have also contributed to increasing greenhouse gases. Continued emission of greenhouse gases at current rates would intensify these impacts greatly. Even if global greenhouse gas emissions were eliminated today, the Intergovernmental Panel on Climate Change predicts with high certainty that global temperatures would continue to warm for the next 100 years (IPCC 2007)². Growing evidence over the 20th century reveals that the Pacific Northwest region has grown warmer and wetter. Temperature and precipitation measurements and surveys of non-vascular plants (epiphytic lichens) is demonstrating some of the first effects of climate change on biological diversity and species distribution patterns in the Pacific Northwest region. The Mt Hood National Forest Air Program, working cooperatively with the regional Air Program, is documenting the ecological effects of climate change and that this change is not even across the landscape but depends on the topography and local factors. While there is still much uncertainty in being able to predict future climate, several regional climate models provide some scenarios of what to expect: #### Water-related Warmer, wetter winters and warmer drier summers are anticipated. Lower snow packs create a disruption in the hydrologic cycle which can lead to more winter flooding, rising stream temperatures, earlier snowmelt, reduced stream flows, and reduced seasonal water-storage capacity for forest soils. The demand for water resources, already stressed by a growing populace, will likely lead to summer water shortages. All these changes to the hydrology and capacity of the forested systems will put greater stress on federally listed aquatic species and challenge the resiliency of all forest ecosystems. #### Terrestrial-related Vegetation response to warming temperatures will vary by ecosystems. Timing changes with temperature sensitive physiological processes (flowering, bud flush) and survival will affect wildlife. Warmer drier climate favors increased fire frequency and severity. Warmer - ² IPCC. 2007. Climate Change 2007: Synthesis Report. Summary for Policymakers. temperatures create favorable conditions for pests currently limited by cold winter temperatures and frost. While vegetative composition responses to ecosystem changes due to climate change will occur by adaption over time, vegetative loss due to climate change will occur rapidly through fire and insect and disease outbreaks. The magnitude of change in temperature and local responses by plant communities will vary by location and their ability to 'weather' the changes. Impacts to wildlife will depend on the rate of change in the vegetation and wildlife dispersal mechanisms. #### By forest zones/physiographic provinces on the Forest The drier Eastside Cascade forest physiographic province will be even more sensitive to water stress which can result in the water-related conditions described above, as well as probable increased vulnerability to fire severity. For Westside Cascade forest physiographic province, regional climate models differ in their prediction for precipitation changes. Future climate could be wetter or drier. The warmer temperature and change in hydrologic cycle, as described above, will result in longer summer and more droughts. In the wettest portions of the Forest, productivity may even increase. For upper elevation forest, snow packs will be reduced, hydrologic cycles could change, and some upper elevation forest zones could be lost. Monitoring by the regional and Forest air program is already showing that the most dramatic warming is occurring in the mid to high elevation Oregon and Washington Cascades. From a biodiversity perspective, species at greatest risk on the Forest would be rare alpine and subalpine species with cold temperature requirements. ## **Air Quality** Forest Plan goals for management of air resources are to continue to improve the existing character of air quality from the past; management activities do not degrade Class I or II Wilderness and general forest standards; and the requirements of the State Implementation Plan for the Clean Air Act are met. Specific objectives for Forest-level air resource management include: - 1. Monitoring air pollutants when Forest Service goals and objectives are at risk and adequate data are not available. - Defining selected sensitive indicators of air quality, Air Quality Related Values (AQRV). Monitor AQRVs and establish the acceptable level of protection needed to prevent adverse ecological, human (visitor experiences such as visibility or odors), or cultural (e.g. archeological) impacts. - 3. Minimizing air pollutant impact from land management activities. - 4. Managing smoke from management ignited prescribed fires. #### Smoke Emissions Smoke from prescribed fires is the primary air quality concern from management activities. The goal of the Forest Plan is to reduce emissions 63% by the end of the first decade
of the Forest Plan, which is being achieved to date. The Forest remained in compliance throughout the monitoring period (October 2008 – September 2009). #### Air Pollutants The air pollutants of greatest concern on the Mt Hood National Forest and its Class I Wilderness are nitrogen oxides, ammonia, sulfur dioxide, toxic metals, and ozone. Figure 9: Epiphytic lichens, mosses and liverworts are a conspicuous component of Mt Hood National Forest vegetation. They are highly sensitive to eutrophying and acidifying air pollutants. (Photo courtesy Stephen Sharnoff.) Emissions of nitrogen oxides from fossil fuel combustion and ammonia from agriculture are the primary source of eutrophying pollutants. These pollutants are deposited from the atmosphere to forest ecosystems as nitrate and ammonium ions. Because forest ecosystems of the Cascades are generally adapted to low nutrient inputs, too much nitroaen can cause shifts in species composition favoring those with higher N requirements—usually weedy species—over endemic and ecologically important species. Atmospheric transformations of nitrogen oxides and sulfur dioxide also produce nitric and sulfuric acids, the primary components of acid rain. These acidifying and oxidizing pollutants are most detrimental to the health of plants. Biomonitoring remains the primary method by which the Mt. Hood National Forest monitors air quality. AQRVs monitored by the Mt. Hood National Forest are vascular plants sensitive to ozone, and non-vascular plants (epiphytic lichens and mosses) sensitive to nitrogen- and sulfur- containing pollutants. Of all the national forests in Oregon, the Mt Hood National Forest is most vulnerable to air pollution because of its proximity to the Portland/Vancouver metropolitan area to the west, and, to the east, the intensively agricultural counties of Hood River, Wasco and the Columbia Basin. It is a tribute to state and federal environmental policies that, despite a marked increase in state population since 1982, air quality on the Mt Hood National Forest has generally stayed the same, improved, or is still within clean site ranges for most monitored pollutants. The condition, species diversity and abundance of the most air- pollution sensitive vegetation, so far indicates an overall steady state or slight improvement in air quality. Visibility in the Mt. Hood Wilderness is comparable to other Class I Wildernesses in Oregon, as are fine particulates from forest fires. However, a few areas are worrisome. Concentrations of ammonia (mg/L) in precipitation consistently exceeded critical levels for sensitive epiphytes in the Bull Run watershed from 1982 through 2003, when monitoring ceased. Decreases in sulfates documented during the 1980s and 1990s by the NADP monitor at Bull Run appear to have leveled off-as indicated by no change in ammonium sulfate in fine particulates measured by the Mt Hood IMPROVE site since 2000, and no change in sulfates in precipitation at the Columbia River Gorge NADP monitor near Stevenson, WA. Small increases in sulfur accumulated in epiphytic vegetation were actually documented across many sites in the forest, and about 20% of sites exceeded expected background ranges for this element. The concentration of sites with increased vanadium and sulfur concentrations in the eastern sections of the Forest indicates new sources or increased emissions from existing sources east of the Cascade crest. Although no trends data are available yet, mercury contamination of forested ecosystems is increasing nationally and also warrants monitoring. Increases in some contaminants may be due to increased Pacific storm intensity which could be bringing larger amounts of marine aerosols deeper into the Forest via the Columbia River; increases in trans-Pacific transport are also possible, as is the possibility that warmer climates in the Cascades are causing some metals to be transported to higher elevations. But, in general, local and regional emission sources can be expected to explain most contaminants. ## STRATEGY G #### Enhance carbon storage in Mt. Hood National Forest and forest products. Potential changes in the physical and chemical nature of the earth's climate are likely to have impacts on forest ecosystems. The extent and magnitude of these changes are uncertain. Forests and forest management can make a difference in responding to the challenges of climate change through carbon sequestration and storage. The United States has the world's fourth largest forest estate and one third of its land area is in forestland. America's forests offset about 10% of our country's carbon emissions. Based on 20 years of targeted research and a century of science and management experience on public and private lands, the Forest Service strategy is to lead efforts to mitigate and adapt to climate change, and provide options for reducing carbon emissions through use of forest products, biofuels, and sustainable operations. ## **Carbon Sequestration** Interest in carbon sequestration has increased in an effort to explore opportunities for climate change mitigation. Carbon sequestration is the process by which atmospheric carbon dioxide is absorbed by trees through photosynthesis and stored as carbon in biomass (trunks, branches, foliage, and roots) and soil. Sustainable forestry practices can increase the ability of forests to sequester additional atmospheric carbon while balancing with other ecosystem services. Planting trees, restoration, increasing health and resiliency of forests, increasing forest growth, and treating invasive species are examples of ways to increase forest carbon. Pacific Northwest forests have a high potential to store carbon due to their composition of long-lived species and high productivity. The role of federal forests in managing under the uncertainty of climate change is still being formulated and the evaluation of global change effects is Figure 10: Old-growth Douglas-fir perhaps more appropriate at the regional level than at the project level. However, managers are beginning to integrate considerations for climate change impacts in their programs by improving ecological health and anticipating changes in disturbance regimes, thereby, enhancing the capacity of forests and grasslands to adapt to the environmental stresses of climate change and maintain ecosystem services. ## **CONCLUSION** In conclusion, based on overall forest condition, review of the monitoring information, and ongoing management activities, the Mt. Hood Forest Plan, as amended by the Northwest Forest Plan of 1994, is sufficient to guide management of the Forest over the next year. Minor non-significant amendments may be made as the need arises. # APPENDIX A: DETAILED REPORTS, INCLUDING FOREST PLAN MONITORING GOALS AND RECOMMENDATIONS ### STRATEGY A Promote a sound legal system, effective and adequately funded government, leading-edge research, and sound economic policies. ## **Volunteers and Partnerships** Volunteers and partnerships are an integral part of implementing the natural resource agenda at the local level. Volunteers include both individuals and organized groups. Some partnerships are involved in major collaborative and stewardship roles. During the 2009 season, Mt Hood broke its own volunteer engagement records by logging over 52,000 volunteer hours valued at over \$1.05 million. In addition, the Forest established or continued over 400 organizational partnerships which leveraged an additional \$3.5 million in external resources to accomplish mutually beneficial work. The Forest has won awards and recognition in past years for its Forest's volunteer, youth, hosted and partnership programs such as Cascade Streamwatch, Salmon Watch, Clackamas Stewardship Partners, Sandy River Basin Partners, Barlow/Hood River Youth Conservation Corps, and others. Volunteers and partners contribute labor, skills, and funding, performing work in the interpretative program, fishing clinics, archeological survey projects, wildlife tracking surveys, trail maintenance, restoring recreation sites, grooming of snow trails, and filling positions as fire lookouts and wilderness stewards. As the number of Forest employees continues to downsize, more emphasis is placed on organized volunteer groups and partners to take an active role in recruiting, training and supervising volunteer activities. Particular highlights from 2009 include: #### Portland-Vancouver Urban Youth Engagement Strategy The Forest has taken leadership in designing and deploying a strategy for the Mt Hood, Gifford Pinchot National Forest, and Columbia River Gorge National Scenic Area to reach out to urban youth in the area. This work is primarily accomplished through agreements with community partners, including the Urban League of Portland, Youth Employment Institute, Portland Opportunity Industrialization Center, Vancouver NAACP, Oregon Zoo, Native American Youth and Family Center, and Columbia Gorge Ecology Institute. These partnerships result in 3:1 match of private to federal funds, and over 1,200 youth actively engaged in natural resource educational activities. #### Portland Urban Youth and Outdoor Exploration Program An initiative with the Urban League of Portland, Youth Employment Institute, Oregon State Parks, Oregon Youth Conservation Corps, Bureau of Land Management, Gifford Pinchot National Forest, and Columbia River Gorge National Scenic Area. Through the program, 14-15 year olds from North and Northeast Portland were introduced to ecological concepts and outdoor recreational activities throughout the summer. The 2009 program expanded to include 16-21 year olds, contributed towards Forest Service targets, offered academic credit, and formed new partnerships with REI and the African American Outdoor Association. #### Youth Conservation Corps Barlow and Hood River Ranger Districts in partnership with Oregon Youth Conservation Corps and Hood River and Wasco Counties sponsored ten local teenagers
to work and learn on the Forest. #### Barlow Trails Trail maintenance on the Barlow Ranger District is achieved almost exclusively through partnerships and volunteer efforts, including a total of more than 3,000 volunteer hours in 2009. In addition, community stakeholders worked with district staff to design and construct the relocation of Cooks Meadow Trail. #### Cross Country Skiing with Schools for the Blind Hood River Ranger District partnered with the Oregon Nordic Club, Wy'East Nordic, Mountain Tracks, and Northwest Interpretive Association to host 30 participants from the Washington School for an overnight stay and cross country skiing expedition. #### Zigzag Interpretive Program Each summer and throughout the year the Zigzag Ranger District recruits volunteers and student interns to provide interpretation, conservation education, and visitor information at Timberline Lodge, Wildwood Recreation Area, Timothy & Trillium Lakes and various other locations across the Mount Hood National Forest and it neighboring communities. Both volunteers and interns work under the guidance of the Forest Service Interpretation and Conservation Education Specialist along with the Interpretive Program Manager. Volunteers and student interns from around the country are first trained, and then perform a myriad of tours, hikes, talks, and special events. In 2009 these individuals volunteered almost 4,500 hours and interacted with over 30,000 visitors. #### New Winter Entry to Timberline Lodge 2009 marked the culmination of an innovative public-private partnership between Mt Hood National Forest, RLK and Company (operators of Timberline Lodge), and Friends of Timberline, a nonprofit organization. In 2004, Friends of Timberline held a design competition for a new seasonal winter entry to Timberline Lodge. A winner was chosen from the 22 entries, and work commenced on engineering and historical consistency reviews, as well as fundraising. Friends of Timberline raised \$773,000 of cash and in-kind services for the entrance from over 200 contributors, resulting in a stunning symbol of successful partnership. #### Northwest Service Academy Interns Each of the four ranger districts on the Forest hosted a Northwest Service Academy/Americorps intern who served as Community Stewardship Coordinator, expanding the role of the forest in our surrounding communities. These young Americorps interns deserve credit for Mt Hood working with more volunteers for more hours than ever before! ## **Financial Review** The purpose of this monitoring item is to track funding levels necessary to achieve the outputs predicted in the Forest Plan. The total budget predicted for full Forest Plan implementation was \$21,759,718; actual funds available in FY 2009 were \$27,098,206. Multiple combinations of funding categories have occurred during the last few years, which make tracking specific program areas difficult. Each year, Congressional budgets move the Forest towards the many desired future conditions identified in the Forest Plan. The annual program is an incremental step toward implementation of the goals and objectives set forth in the Forest Plan. Outputs and activities in individual years will vary due to changing conditions and Congressional budget appropriations. The figures below show a significant change as related to the total Forest budget and workforce (Full Time Equivalent = FTE) since 1990. Figure 11: Mt. Hood National Forest Budget, 1990-2009 Figure 12: Mt. Hood National Forest Workforce, 1995-2009 #### **Forest Plan Amendments** As the Forest continues to implement the *Mt. Hood Land and Resource Management Plan*, as amended by the Northwest Forest Plan, it is apparent that amendments and clarification of direction is continually needed if the Forest Service is to meet the expectation and desires of the public. New information identified through various monitoring programs will continue to be evaluated. The need to change the Forest Plan will be reviewed in accordance with the National Forest Management Act (NFMA) regulations and the Northwest Forest Plan Standards and Guidelines. An important aspect of keeping the Forest Plan an up-to-date, living document is the preparation of amendments. Based on analysis of objectives, standards, monitoring, and changing conditions, the Forest Plan will need to be amended from time to time. Some of these amendments may involve significant changes and will require an Environmental Impact Statement to be completed. Other changes, however, will require only minor adjustments and an Environmental Assessment may be adequate. As of September 30, 2009, sixteen amendments have been made to the Forest Plan. Five amendments reflect changes made during Wild and Scenic River planning; three concern invasive plant (noxious weed) management; one adjusts a Research Natural Area Boundary; one responds to Elk Habitat Enhancement needs; one deals with standards and guidelines relating to management of Habitat for Late Successional and Old Growth Related Species within the Range of the Northern Spotted Owl; one expands Mt. Hood Meadows ski area permit boundary; one Congressional Act modifies activities within the Bull Run watershed; one designates Timberline Lodge and its immediate environs (approximately five acres) as a Historical Special Interest Area (A-4); and one changes the visual quality objective for roads near Timberline Lodge. #### The sixteen amendments are: - 1. October 3, 1991. *Big Bend Mountain Research Natural Area.* This amendment changes the boundary within the Bull Run Watershed. - 2. March 10, 1993. **Salmon Wild and Scenic River Environmental Assessment and Management Plan.** This amendment delineates final river boundary and eliminates "regulated" timber harvest within the corridor. - 3. April 19, 1993. *Clackamas Wild and Scenic River Environmental Assessment and Management Plan.* This amendment delineates final river boundary and removes all National Forest System land within the river corridor from "regulated" timber harvest. - May 17, 1993. Lemiti Elk Habitat Enhancement Project. This amendment exchanges an existing Roaded Recreational Management Area at Lemiti Creek with an adjacent Deer and Elk Summer Range Management Area. - 5. September 13, 1993. Roaring National Wild and Scenic River Environmental Assessment and Management Plan. This amendment delineates final river boundary and modifies management direction within the corridor relating to recreational developments, timber harvest and commercial livestock grazing. - 6. December 8, 1993. Environmental Assessment for Management of Noxious Weeds, Mt. Hood National Forest. This amendment clarifies noxious weed management objectives by adding missing statements pertaining to noxious weed management under Goals, Desired Future Condition and Resource Summary sections of the Forest Plan. - 7. February 24, 1994. *Upper Sandy National Wild and Scenic River Environmental Assessment and Management Plan.* This amendment delineates final river boundary and eliminates "regulated" harvest within the corridor. It provides replacement management direction for the new A-1 allocation. - 8. May 13, 1994. Record of Decision for Amendments to Forest Service and Bureau of Land Management planning documents within the range of the Northern Spotted Owl. This decision amends current land and resource management plans with additional land allocations and standards and guidelines. - November 3, 1994. White River National Wild and Scenic River Management Plan. This amendment delineates final river boundary which included the adjustment of the river corridor termini to include White River Falls. It also modified management direction in relation to recreational use, timber harvest, and road construction among other site specific management activities. - 10. 1996. The Oregon Resource Conservation Act of 1996 Changed the Allocation for the Bull Run Area from Administratively Withdrawn to Congressionally Withdrawn. This amendment prohibits harvesting of trees for timber management within the Bull Run drainage and prohibits the authorization of salvage sales. - 11. January 24, 1997. The Environmental Impact Statement for the New Long Term Conceptual Master Plan for Mt. Hood Meadows Ski Area. This amendment expands the ski area permit boundary by 96 acres to include an area which was being used by the ski area. It changes the land allocation for this area from a Wildlife/Visual classification to Winter Recreation classification. It also changes the Northwest Forest Plan allocation from Matrix to Administratively Withdrawn. - 12. November 4, 1998. *The Timberline Lodge Master Development Plan Amendment.* This amendment adopts the Historic Building Preservation plan to provide the long-term management strategy for Timberline Lodge as a National Historic Landmark. The amendment also designates Timberline Lodge and immediate environs as a (Historic) Special Interest Area (A-4 Land Allocation). - 13. December 11, 2000. Wilderness Recreation Spectrum allocations and Forest Plan standards. This amendment would make revisions to the Wilderness Recreation Spectrum allocations and Forest Plan standards dealing with "Limits" as related to Limits of Acceptable Change process. Standards relating to visitor use, restoration of impacted sites and public involvement are adjusted. - **Note**: This decision was recalled based on information identified during the administrative appeal process. A new decision has not yet been issued and the amendment has not been implemented. - 14. October 11, 2005. Pacific Northwest Region Invasive Plant Program Preventing and Managing Invasive Plants Record of Decision. This amendment adds invasive plant management direction, including invasive plant prevention and treatment/restoration standards intended to help achieve stated desired future conditions, goals and objectives. The management direction is expected to result in decreased rates of spread of
invasive plants, while protecting human health and the environment from the adverse effects of invasive plant treatments. - 15. November 1, 2005. *Timberline Express Final Environmental Impact Statement*. This amendment revises the Visual Quality Objective (A11-017 and A11-020) from "Partial Retention" to "Modification" in the foreground, as viewed from Timberline Highway (Highway 173), West Leg Road (Road 2645), Timberline Road, and riparian areas within the Timberline Special Use Permit area. This change increases the percent of the seen area visually disturbed at any one time. - 16. February 29, 2008. Site-Specific Invasive Plant Treatments for Mt. Hood National Forest and Columbia River Gorge National Scenic Area in Oregon. This amendment allows, where appropriate, careful and targeted herbicide use to treat invasive plants according to the Pacific Northwest regional standards and in accordance with the project design criteria. This amends six existing Forest Plan standards and guidelines that discourage or prohibit the use of pesticides, including herbicides. ### STRATEGY B Ensure that the Mt. Hood National Forest provides diverse social and economic outputs and benefits valued by the public in a fair, balanced, and efficient manner. ## Recreation ## **Monitoring Goals** The Forest Plan projects increases in demand for virtually all recreation opportunities provided by the forest over the long-term. It also predicts that meeting demand will depend, to a significant extent, on privately developed and operated sites and opportunities. As demands for winter sports, organizational activities, and overall developed recreation opportunities increase, they will be met by concessionaires or permit holders. Primitive and semi-primitive recreation opportunities will be limited primarily to wilderness, special interest areas, and some unroaded areas where natural conditions will be maintained. In wilderness, heavily used trails, trailheads, and campsites will be returned to a more primitive state. Figure 13: Mt. Hood at sunset Monitoring current recreation use, and tracking recreation use trends, helps the forest to evaluate and predict (1) recreation infrastructure needs, (2) capital investment opportunities, (3) recreation use fee structures, and (4) private sector opportunities. ## **Existing Conditions** As part of the Recreation Facility Analysis in 2007, the Forest developed a recreation program niche statement. The Forest's recreation niche defines the best-suited recreation experiences or benefits that the Mt. Hood National Forest can provide. It is what makes the Forest special, and fosters quality recreation versus quantity, or trying to be all things to all people. It provides a description of the uniquely specific recreation opportunities provided by the Forest within the context of the forest's ecological features, opportunities provided by others in the area, and the demands and desires of recreation visitors to the area now and into the future. The niche provides the context for all recreation programs on the Forest and will help the Forest match up what is most wanted with what we can best provide to create the most value for the public within available resources. The Mt. Hood National Forest recreation niche statement is: #### A Mountain of Possibilities Mt. Hood is an Oregon icon, exemplifying the connection between community and place. With its many historic and cultural threads, the mountain is woven into the economic and social fabric of people and communities in and around the forest. Through collaboration, Mt. Hood National Forest staff fosters citizen stewards who contribute their talents toward the betterment of the forest and who share their outdoor skills with others. Sustainable partnerships increase the Forest's contribution to quality of life and sense of place. More than four million people come to the Forest each year for play, exercise, learning, connection to nature, and spiritual renewal. Visitors appreciate the variety of year around, easily accessible recreation activities; and many consider it their "back yard." They value the landscape tapestry that provides great trails and opportunities for solitude. Others may only see the mountain from afar, but their lives are enriched by its intrinsic values. Designated wilderness in Mt. Hood National Forest increased by approximately 124,200 acres with the passage of the Omnibus Public Land Management Act of 2009. Three new wilderness areas were designated (Clackamas, Roaring River, and Lower White River), and part of the Mt. Hood Wilderness received a special designation to memorialize Richard L. Kohnstamm. Approximately 96.6 additional miles of forest trail are now in designated wilderness; however none of these trails are currently monitored for use. Nine new Wild and Scenic River segments were designated with the passage of the Omnibus Public Land Management Act of 2009. The total number of miles of river included in this designation is 81 miles, and includes portions of the following rivers: Collawash, Eagle Creek, East Fork Hood River, Fifteenmile Creek, Fish Creek, Middle Fork Hood River, South Fork Clackamas River, South Fork Roaring River, and Zigzag River. ## Monitoring Questions, Activities, and Evaluations The following Forest Plan Monitoring questions are evaluated in this report: - Developed Recreation: Are developed recreation sites providing the variety of use opportunities designed to meet user's needs, interests, and equipment; and being maintained to a level expected and accepted by those using developed facilities - Recreation Opportunity Spectrum (ROS) Settings: Are physical/environmental, social, and managerial conditions for dispersed ROS settings being planned for a wide range of activities consistent with public demand? - Trails: Are trails and trail corridors being maintained and managed for a variety of uses and experiences consistent with public demand? - Wilderness: Is wilderness being managed to maintain wilderness character and natural processes and provide for a wide range of permitted uses? - Wild and Scenic Rivers: Are the outstandingly remarkable river values of all eligible, suitable and designated Wild and Scenic Rivers being maintained or enhanced as required? - Off-Highway Vehicle Use: Are off-highway vehicle (OHV) opportunities providing a quality experience to the customers, ensuring their safety, and the safety of the general public? Are conflicts being minimized between users, with wildlife (and their habitats), and is resource damage being minimized in areas that are suitable for each appropriate OHV use? ## Results of Monitoring ## **Developed Recreation** Goal: Developed recreation sites provide the variety of use opportunities designed to meet user's needs, interests, and equipment. They are maintained to a level expected and accepted by those using developed facilities. #### Campgrounds Visitation and utilization data was reported for concession-managed campgrounds in 2009 (Table 4). The Highway 26 and Clackamas River Complex campgrounds had their most profitable year to date. While total campsites occupied in the Hwy 26 corridor was higher than in 2008, the percent occupancy actually decreased. There is not a direct correlation between % site occupancy and number of campers or number of sites occupied. The camping season was longer in 2009, so there were more campsites unoccupied during the shoulder seasons (spring and fall). There was also less variation in occupancy between the campgrounds in 2009 than in 2008. The highest mean occupancy level in 2009 was 46% at Hoodview Campground (Timothy Lake). The campground with the second highest occupancy level was Trillium Lake at 45% occupancy. Both of these campgrounds had mean occupancy over 60% in 2008. At the other end of the spectrum, Riley Horse Camp, Summit Lake, and McNeil Campgrounds had mean occupancy levels of 9%, 10%, and 11%, respectively. All of these campgrounds are being used in a manner consistent with the site design. Lost Lake and East Fork Complex campgrounds continue to have occupancy rates in the mid-30% range. Usage at Lost Lake is correlated to the spring opening date which is weather dependent. Campgrounds in the Olallie Lake Scenic Area were open in 2009. With the exception of Paul Dennis Campground, all others were operated and maintained by Forest Service crews. Occupancy data for eastside rustic campgrounds was collected in 2009 and compared with the previous three years (**Table 4**). In 2009, Whatum, Rainy Lake and Black Lake Campgrounds (Hood River RD) were managed by the Lost Lake Campground concession operator. What appears to be a higher occupancy level at Hood River RD rustic campgrounds (24%) is actually a higher level of revenue collected, probably due to the concessionaire's greater presence and higher level of management. Percent occupancy at Barlow RD rustic campgrounds continues to hover in the mid-teens. The Forest Plan projected reaching capacity in Forest Service developed sites in 26 years. Projections of campground occupancy that were made in the early 1990's predicted that additional capacity would be needed during the first decade of the 21st century. Occupancy figures during 2009, as well as those for the past several years, suggest otherwise. Like similar older recreation complexes throughout the National Forest System, the campgrounds on the Forest fill a social and economic niche that many long-time visitors to the Forest appreciate. That user group, however, is not expanding as originally projected, and may be shrinking. In general, the Forest has more developed camping capacity than demand on most days during the camping season. Exceptions are weekends during July and August at many of the campgrounds. Table 4: Comparison of Mt. Hood National Forest campground use from 2006 through 2009 by number of campers and percent occupancy (total site occupancy/# sites). ND = no data available by
publication date. | Campground | 2006 | | 2007 | | 2008 | | 2009 | | |--------------------------|---------|-------|---------|-------|---------|-------|---------|-------| | Complex | Campers | % Occ | | Hwy 26 | 110,876 | 32% | 106,948 | 37% | 99,443 | 41% | 126,339 | 29% | | Clackamas
River | 45,406 | 24% | 46,461 | 26% | 53,377 | 29% | 54,582 | 24% | | Lost Lake &
East Fork | ND | 31% | ND | 32% | ND | ND | ND | 36% | | Olallie | ND | 31% | ND | ND | ND | ND | ND | ND | | Barlow RD
Rustic | ND | 17% | ND | 13% | ND | 12% | ND | 14% | | Hood River RD
Rustic | ND | ND | ND | 8% | ND | ND | ND | 24% | #### Ski Areas According to the National Climatic Data Center, by the end of April the snowpack levels were at or slightly above normal for the Pacific Northwest. Some areas along the Oregon Coast Range and the Cascade Range of Washington received more than 200 percent of 1971-2000 snowfall normal (NOAA). High pressure shunted many storms north of Mt. Hood. Overall, the annual snowpack on Mt. Hood was slightly below normal. A severe ice and snow storm in northwest Oregon, including the Portland Metropolitan area, during the week preceding Christmas was a blow to developed ski resorts. Air travel was halted at Portland International Airport for several days. Road conditions further conspired to keep skiers away from Mt. Hood ski areas. Table 5: Comparison of Mt. Hood National Forest ski area visits in winter seasons beginning 2004 through 2009. Data from Pacific Northwest Ski Areas Association. Timberline includes summer skiing. | Ski Area | 2004-2005 | 2005-2006 | 2006-2007 | 2007-2008 | 2008-2009 | 10-Yr Avg. | |---------------------|-----------|-----------|-----------|-----------|-----------|------------| | Cooper Spur | 915 | 22,906 | 19,604 | 21,882 | 4,532 | 11,535 | | Mt. Hood
Meadows | 190,722 | 503,095 | 460,328 | 509,001 | 395,140 | 388,227 | | Ski Bowl | 146,833 | 304,899 | 370,922 | 413,823 | 411,930 | 233,256 | | Summit | No Report | 14,347 | 14,484 | 22,232 | No Report | 8,981 | | Timberline | 196,856 | 233,164 | 251,617 | 320,671 | 271,415 | 259,508 | Use of Forest's five alpine ski areas during the 2008/2009 season was 15% lower than use during the previous season, mirroring the regional trend which showed an overall 15% decrease in skier visits (**Table 5**). Despite a slight drop in visitation from the previous year (less than one percent), Mt. Hood Ski Bowl became the most visited ski area in Forest with a total of 411,930 visits, according to the Pacific Northwest Ski Areas Association 2008/2009 Annual Visitation Report. Mt. Hood Meadows had 395,140 visits, 113,861 visits fewer than the previous year (a 22% decrease). This decrease was greater than for the region as a whole. Timberline reported 271,415 visits, 49,256 fewer visits than the previous year (a 15% decrease). Cooper Spur reported only 4,532 visits, a substantial 79% decrease in use from the previous year. Summit Ski Area provided no report for the season. ## **ROS Settings** Goal: Physical/environmental, social, and managerial conditions for dispersed ROS settings are planned for a wide range of activities consistent with public demand. In 2009, dispersed ROS settings were not monitored for consistency with recreation activities and public demand. #### **Trails** Goal: Trails and trail corridors are maintained and managed for a variety of uses and experiences consistent with public demand. The Forest Plan projected that there would be 1,560 miles of trail by 2010. In 2009, there were 977 miles of trail in the forest. The Forest has no site-specific estimates of trail use, so it is difficult to assess if trail use exceeds capacity. Anecdotal evidence suggests that it does not. The Forest Plan also projected that trail construction and reconstruction would average 74 miles per year for each decade. Appropriated trail construction funding has diminished, and the actual average accomplishment for the Forest is considerably less. During 2009, the Forest awarded a contract to reconstruct 0.8 miles and relocate (new construction) approximately 1.1 miles of Palmateer Trail (#482). In 2009, several miles of new trail were constructed in Forest. Americorps crews from the Northwest Service Academy continued construction of 2.5 miles of new hiking/biking/cross-country ski trails around the Village of Government Camp. The trails are part of the Government Camp Master Trails Plan funded by the Government Camp Tax Increment Financing District. Approximately 150 miles of system trails were maintained to standard in 2009. This work was accomplished by Americorp and Northwest Youth Corps crews, volunteer labor, and a Forest Service (Hood River Ranger District) trail maintenance crew. Thirty-four trail bridges were inspected in 2009. For a third year, the Timberline Trail (#600) was impassable at Eliot Creek due to the severe washout resulting from a November 2006 storm event. The Eliot Creek crossing area is closed for public safety. Figure 14: Eliot Creek washout as seen from the Timberline Trail, with Gnarl Ridge Fire burned area visible in the distance. #### Wilderness Goal: Wilderness is managed to maintain wilderness character and natural processes and provide for a wide range of permitted uses. In 2004, the Forest Service established a performance measure for evaluating how well the agency is managing wilderness. Each wilderness area is evaluated annually against the following ten elements: fire management; non-native, invasive plants; air quality; wilderness education plans; opportunities for solitude; recreation site inventory; outfitter/guides; land management plan standards; information management; and baseline workforce. The national quantitative scoring rubric defines the minimum stewardship level at a score of 60 out of 100 points. Currently, no wilderness in Mt. Hood National Forest has passed that threshold. Table 6 shows the annual scores for wilderness areas managed by the forest from 2005 through 2009. The Chief of the Forest Service has challenged the agency to manage 100% of the National Forest wilderness areas to minimum stewardship levels by 2014, the 50th anniversary of the Wilderness Act. This challenge has become known as the 10-Year Wilderness Stewardship Challenge (10YWSC). Table 6: Comparison of 10YWSC scores for wilderness areas managed by Mt. Hood National Forest from 2005 through 2009. | Wilderness | 2005 | 2006 | 2007 | 2008 | 2009 | |--------------------|------|------|------|------|------| | Badger Creek | 16 | 15 | 18 | 20 | 20 | | Bull of the Woods | 16 | 15 | 18 | 20 | 20 | | Mark O. Hatfield | 40 | 51 | 56 | 58 | 58 | | Mt. Hood | 42 | 51 | 56 | 58 | 59 | | Salmon-Huckleberry | 40 | 51 | 56 | 58 | 58 | Recreation visitation to the Mt. Hood wilderness in 2009 (at reporting trailheads) was substantially higher than in 2008 or any of the other years shown in the table. This data breaks the downward trend in wilderness visitation in Forest (**Table 7**); however, it does not yet indicate an upward trend. Translating visitation to recreation visitor days (an RVD = one visitor for 12 hours; and the average duration of a wilderness visit in the Mt. Hood NF is seven hours), 2009 use at Hood River Ranger District trailheads was roughly 11,989 RVDs. In 2008, the number of RVDs reported at the same locations was about 3,218. The Mt. Hood National Forest Land Management Plan estimated the annual RVD carrying capacity for the Mt. Hood Wilderness at 36,118. Assuming that entry into the Mt. Hood Wilderness at Zigzag Ranger District trailheads in 2009 was at or near 2007 levels, total visitation (RVDs) in the Mt. Hood Wilderness is still well below capacity. Several environmental conditions help explain the reduced wilderness visitation in 2008. The Natural Resources Conservation Service reported exceptionally late snow melt over the northern states in the West. In mid-June, the snow-water equivalent was still 150% of average, a condition which delayed access to most of the Mt. Hood Wilderness. Some of the reduction in visitation may also be attributable to the fire closure in the Gnarl Ridge area. More than half of the Mt. Hood Wilderness (including all Hood River Ranger District trailheads) was closed to public entry starting September 17, 2008. Table 7: Comparison of Mt. Hood Wilderness visits from 2006 through 2009. Data is from self-registration stations at trailheads. Sampling by Forest staff shows that approximately 93% of Mt. Hood National Forest wilderness visitors self-register. Total use includes overnight visits. | Trailhead | Total Use
(People) 2006 | Total Use
(People) 2007 | Total Use
(People) 2008 | Total Use
(People) 2009 | |------------------|----------------------------|----------------------------|----------------------------|----------------------------| | Burnt Lake North | 2,392 | 18 | * | * | | Burnt Lake South | 951 | 1,569 | * | * | | Cast Creek | 228 | 0*** | * | * | | Castle Canyon | 295 | 294 | * | * | |---------------------|-------|--------|-------|-------| | Cloud Cap | 2,678 | 3,055 | 3,014 | 8,272 | | Elk Cove | 178 | 366 | 522 | 642 | | Elk Meadows North | 117 | 58 | 202 | 224 | | Elk Meadows South | 783 | 1,577 | 1,798 | 4,256 | | Hidden Lake | 393 | 627 | * | * | | Horseshoe Ridge | 280 | 0*** | * | * | | Mazama | 402 | 950 | 1,088 | 1.056 | | McGee Creek | 1,166 | 1,440 | 2,318 | 3,178 | | Muddy Fork Top Spur | 2,995 | 3,485 | * | * | | Newton Creek | 183 | 206 | 186 | 380 | | Pinnacle | 187 | 375 | 222 | 156 | | Paradise Park | 334 | 47 | * | * | | Ramona Falls | 7,453 | 391*** | * | * | | Timberline – Climb | 4,778 | 4,870 | * | * | | Timberline – PCT | 4,771 | 3,724 | * | * | | Tilly Jane | 234 | 1,162 | 1,692 | ** | | Vista Ridge | 1,147 | 1,007 | 1,378 | 2,388 | | West Zigzag Mtn. | 177 | 230 | * | * | | | | | 1 | | ^{*} Data not available at time of publication. **Table** 8 shows use at popular trailheads in Mark O. Hatfield Wilderness areas from 2006 through
2009. Most of the trails in Hatfield Wilderness have very little use with the exception of Eagle Creek and Whatum Lake trails. Use at these trails was substantially higher in 2009 than in any of the previous years shown in the table. No data is available for Salmon-Huckleberry Wilderness in 2009. ^{**} Data included in Cloud Cap count. ^{***} Road 1825 was closed for most of the 2007 hiking season due to a bridge washout during November 2006. The use shown for the Ramona Falls trail represents users who probably forded the Sandy River or who hiked late in the year. Table 8: Comparison of Mark O. Hatfield Wilderness visits from 2006 through 2009. Data is from self-registration stations at trailheads. Sampling by Forest staff shows that approximately 93% of Mt. Hood National Forest wilderness visitors self-register. Total use includes overnight visits. | Trailhead | Total Use
(People) 2006 | Total Use
(People) 2007 | Total Use
(People) 2008 | Total Use
(People) 2009 | |-------------|----------------------------|----------------------------|----------------------------|----------------------------| | Eagle Creek | 3,610 | 2,529 | 4,389 | 8,978 | | Whatum Lake | 882 | 895 | 704 | 1,218 | The 2009 Omnibus Public Land Management Act established three new wilderness areas and further expanded existing wilderness areas in Mt. Hood National Forest. The total estimated new wilderness is 124,200 acres. Trails that were incorporated into wilderness were not monitored for use in 2009. #### Wild and Scenic Rivers Goal: Outstandingly remarkable river values of all eligible, suitable and designated Wild and Scenic Rivers are being maintained or enhanced as required. The national performance measure for Wild and Scenic River (W&SR) management is "Rivers Meeting Statutory Requirements." The criteria for this performance measure are: - Outstandingly Remarkable Values (ORV) described - River sections classified - Legal boundary established - Comprehensive River Management Plan (CRMP) completed - Water resource projects evaluated - Water quality protected - ORVs protected - Recreation use managed - Interagency relationships developed None of the Wild and Scenic Rivers managed by the Forest met all of the criteria in 2009. The ORVs for the five original Wild and Scenic Rivers (Clackamas, Roaring, White, Salmon, and Sandy) have been established. An evaluation of the effects to ORVs was completed and submitted to the Regional Office for every in-stream project in 2009. The 2009 Omnibus Public Land Management Act classified nine river segments in Forest as Wild and Scenic Rivers. These rivers traverse 81 miles. ## Off-Highway Vehicles Goal: Off-highway vehicle (OHV) opportunities provide a quality experience to the customers, ensuring their safety, and the safety of the general public. Conflicts are minimized between users, with wildlife (and their habitats), and resource damage is minimized – in areas that are suitable for each appropriate OHV use. No OHV user monitoring was done in 2009. #### Recommendations In 2010, Forest should continue implementing the recreation facility analysis action plan (completed and approved in 2007): - Work with Timberline permit holder to develop an approach to fee collection that more fairly distributes costs among the various users of the Lodge. - Develop a strategy to manage weekend camping demand and market opportunities for midweek camping. - Consider alternative uses for some developed recreation sites such as conversion of some campgrounds to group sites and dual use of sno-parks to group use in the summer. - By 2012, retire \$2 million in deferred maintenance at Timberline Lodge. - By 2012, conduct a comprehensive analysis of costs to operate Timberline Lodge including a facility condition survey. - By 2012, retire current deferred maintenance at all Recreation Enhancement Act sites forest-wide. Expand concession operation of developed recreation sites through a new campground concession prospectus in 2010. Investigate including all eastside rustic campgrounds, Bagby Hot Springs site, Camp Cody, and Clackamas Lake Historic Ranger Station. Reinitiate concession operation of all campgrounds in the Olallie Scenic Area. Increase rental fees (Recreation Enhancement Act [REA] authority) for the three lookout tower lodging rentals (Fivemile Butte, Clear Lake Butte, and Flag Point) and for Clackamas Lake Historic Ranger Station lodging rental. Begin the conversion of the Hwy 26/Hwy 35 High Impact Recreation Area (REA) to three smaller areas fees: Salmon River Road (FR 2816); Forest Road 2639 (Little Zigzag Falls); Forest Road 3545 (Clark Creek/Elk Meadows). ## **Heritage Resources** ## **Monitoring Goal** The monitoring goal is to ensure that heritage resources are being managed, protected, and interpreted according to the Forest Plan's Standards and Guidelines. The Standards and Guidelines are designed to locate, protect, maintain and/or enhance significant prehistoric and historic sites for scientific study, public enjoyment, education and interpretation. A second monitoring goal is to ensure that American Indian rights are being protected on National Forest lands, and that appropriate coordinating activities are occurring. To accomplish these goals, four monitoring elements were identified in the Forest Plan. #### **Tribal Consultation** The Confederated Tribes of the Warm Springs (CTWS) are consulted in all projects located on tribal lands and usual and accustomed areas. The Barlow District Ranger is the Tribal contact for the Forest and meets on a regular basis with the CTWS to discuss a variety of resource issues. In addition to the formal NEPA scoping, the Forest has developed and maintains informal program level contacts with the CTWS. Informal consultation was conducted with the Confederated Tribes of Grand Ronde and CTWS in 2008-2009 for the proposed Travel Management (Off-Highway Vehicle) DEIS study. The Forest Archaeologist met with representatives of both tribes to discuss site assessment and protection methods associated with the project. The Forest Archaeologist also consulted with CTWS regarding Heritage Resource surveys for the Cascade Crest fuels reduction project, located adjacent to the Warm Springs Reservation. #### Historic Preservation Standards Significant (National Register eligible) historic buildings and structures are maintained, stabilized, and repaired according to historic preservation standards, in consultation with the State Historic Preservation Office (SHPO). The following preservation projects were undertaken during Fiscal Year 2009: ## Timberline Lodge (National Historic Landmark) A Historic Building Preservation Plan was completed for Timberline Lodge in 1998. This plan provides managers credible alternatives for routine maintenance, rehabilitation and replacement of historic fabric throughout the building. Table 9 (below), lists projects approved under plan stipulations during fiscal year 2009 in consultation with SHPO. Table 9: Approved Projects at Timberline Lodge | Project No. | Description | Finding | |-----------------|---------------------------------------|---| | 2009-060609-022 | Rams Head Bar Service Rail Microstand | Within Timberline Lodge Agreement. No Adverse Effect. Stip. III.C.3.b | | 2009-060609-012 | ADA Ramp Handrail Replacment | Within Timberline Lodge Agreement. No Adverse Effect. Stip. III.C.1 | | 2009-060609-038 | Housekeeping Door Replacement | Within Timberline Lodge Agreement. No Adverse Effect. Stip. III.C.3.b | | 2009-060609-039 | Public Restroom Remodeling | Within Timberline Lodge Agreement. No Adverse Effect. Stip. III.C.1 | | 2009-060609-056 | Landmark Sign Project | Within Timberline Lodge Agreement. No Adverse Effect. Stip. III.C.3.b | ## Cloud Cap Inn Constructed in 1898 as an inn for guests of mountaineering excursions to Mount Hood, this historic structure consists of a large, irregular shaped rustic log building. The property is listed in the National Register of Historic Places. The Hood River Crag Rats, a search and rescue organization, began managing and maintaining the structure as a base of operations in the 1950's. Numerous restoration and rehabilitation projects have been developed and implemented in consultation with the SHPO. In 2007, the Forest received a large Capital Improvement Projects (CIP) grant for rehabilitation work on the structure. In 2009, rehabilitation work funded through this grant continued on the east wing. Cloud Cap Inn was spared destruction by the heroic efforts of Forest Service firefighters, who directed air tanker fire retardant drops on the structure during the Gnarl Ridge Fire of 2008. ## **Bagby Guard Station** Built in 1913 to serve as headquarters for the Bagby District, Bagby Guard Station consists of a rustic log cabin and associated storehouse associated with a popular hot springs. The property is listed in the National Register of Historic Places. In partnership with Northwest Forest Conservancy (NFC), a private, non-profit organization, the Forest executed a Memorandum of Understanding in 2006 for historic preservation activities involving the guard station. NFC continued implementation of preservation treatments, repair, and rehabilitation work in 2008, focusing particularly on interior flooring. In consultation with SHPO, a "No Effect" ("No Historic Properties Affected") determination was made for the proposed project work. #### Adverse Effect Cases No adverse effect cases occurred during fiscal year 2009. ## Nominations to the National Register of Historic Places The last nomination was for Upper Sandy River Guard Station which was listed in the National Register of Historic Places on September 9, 2009. In consultation with the SHPO, the Forest evaluated no historic resources for National Register eligibility during fiscal year 2009. ## Interpretation and Public Involvement Three methods are typically
used to facilitate public involvement with the Heritage Resource Program: interpretation, education, and volunteerism. The successful interpretive program at Timberline Lodge reaches thousands of visitors every year. Frequent tours are conducted at the Lodge, and Friends of Timberline oversees changing exhibits and demonstrations relating to the history of the Lodge and recreation on Mount Hood. Oregon Archaeological Society (OAS) volunteers participated in an archaeological survey and site testing project: Camas Prairie Archaeological Testing Project, assisting Heritage Program personnel. OAS volunteers also continued participation in the Site Stewardship Program, designed to ensure that particularly vulnerable prehistoric sites receive periodic monitoring and condition assessment. The program operates under the terms of a Memorandum of Understanding between the OAS, Mt. Hood National Forest, Gifford Pinchot National Forest, and Columbia River Gorge National Scenic Area. Training was provided by Heritage Program personnel. #### **Conclusions** The avoidance of impacts to heritage resources was a goal for all projects implemented during fiscal year 2009. Heritage Program staff routinely monitor the condition of heritage resources during and after project activities to ensure that avoidance procedures and protective measures were effective. In 2009, the Forest began development of a historic property management plan for the Mile Bridge tract, now managed as a National Register eligible historic district. #### Recommendations Heritage Program activities focused on the highest priority projects and resource protection efforts. A number of specific projects have been in progress for several years, and remain to be completed. The following projects are recommended for addition to the program of work for fiscal year 2010, depending on staff availability and workload priorities: - Complete the consultation process for the Peeled Cedar Management Plan and execute a Memorandum of Agreement for this class of historic resources. - Complete the management plan for Cloud Cap Tilly Jane Historic District. - Initiate assessments of historic buildings in the Mt. Hood Wilderness and Bull of the Woods Wilderness to determine management goals. ## **Transportation/Roads** ## Monitoring Goal The monitoring goal is to provide safe and efficient access for those who use the transportation system for recreation or management of the National Forest. ## **Road Management** In spite of continuing reductions in funding for road maintenance, construction, and reconstruction, the Forest continues to advance toward the objectives of the Forest Service Roads Agenda. Transportation management objectives being met are: - The Forest is decreasing the size of the transportation system. - The Forest is maintaining or improving 363 miles of mainline road system. - The Forest is decommissioning, closing or downgrading the maintenance levels on the remainder of the 2,878-mile road system. - The Forest's priority in road decommissioning continues to be decommissioning roads in unstable geological areas or roads with unacceptable environmental impacts. Approximately 50% of the 3,241-mile road system is either closed to public access or classified as "available for closure or decommissioning." Many of these roads are being closed naturally by brush. Gates, barricades, and berms are used to close some roads. Reductions of road densities in the thirteen key watersheds are a primary road objective of the Northwest Forest Plan. Road densities in twelve key watersheds have been significantly reduced since the Northwest Forest Plan was implemented in 1992. Road density in the thirteenth key watershed has remained unchanged since 1992. Some effects of downsizing the road system are as follows: - Only one main route will be maintained to access an area or developed campground for passenger car use instead of two or three. - There will be a decreased amount of miles available for recreation opportunities that accommodate passenger car traffic. Recreation opportunities that accommodate high clearance vehicles would be increased. - The increasing demand of Forest recreation use along with the decreased amount of miles available for passenger car traffic will result in more vehicle encounters, raising the probability of accidents occurring. Maintenance efforts, however, will be more focused on the mainline access roads. - There will be less sediment reaching waterways. - There will be less harassment to wildlife. #### 2009 Accomplishments | • | Miles of Road at end of 2008 | .3,384 mi | |---|--|-------------| | • | New Road Construction | .0 mi. | | • | Miles of Road Decommissioned | . 166 mi. | | • | Miles of Road at end of 2008 | .3,241 mi. | | • | Total Miles of Passenger Car Roads Maintenance Level (ML) 3-5 | . 363 mi. | | • | Passenger Car Roads ML 3-5 receiving maintenance | . 213 mi. | | • | % of Passenger Car Roads ML 3-5 receiving maintenance | .59% | | • | Total Miles of High Clearance Roads Operational ML 2 | . 2,377 mi. | | • | High Clearance Roads Operational ML 2 receiving maintenance | . 402 mi. | | • | % of High Clearance Roads Operation ML 2 receiving maintenance | .17% | #### Road Maintenance Funding for road maintenance has decreased in recent years while the aging road system deteriorated at an increasing rate. Most of the road system was constructed 30 to 50 years ago. Maintenance funding has decreased at a time when it should be increasing to keep pace with the road system's increasing rate of deterioration. The trend of the road maintenance budget can be seen in the table below. Table 10: Road Maintenance Budget | | FY89 | FY05 | FY06 | FY07 | FY08 | FY09 | |--------------------------------------|---------------|---------------|---------------|---------------|-------------------|------------------| | Annual Road
Maintenance
Needs | \$5.2 million | \$2.0 million | \$2.1 million | \$2.2 million | \$5.5 million | \$3.0
million | | Annual Road
Maintenance
Budget | \$3.8 million | \$0.6 million | \$0.5 million | \$0.4 million | \$0.97
million | \$1.0
million | | Percent of
Needs Met by
Budget | 73% | 30% | 24% | 18% | 18% | 33% | The road maintenance budget has declined because of decreased timber sale road maintenance deposits and declining appropriated funding in the National Forest Service roads budget. The need for road maintenance has declined because of the declining heavy vehicle traffic use (i.e., log trucks), road closures, and a decrease in the prescribed level of maintenance on open roads. As the above table shows, however, the Forest Service has not been able to decrease the needs fast enough to keep pace with the decreasing budget. Out of necessity, the Forest Service has focused the limited road maintenance funds on the highest priority roads, primarily the low clearance passenger car roads that access major recreation destinations. Deferring road maintenance to future years will lead to additional unsafe or unusable roads. Three solutions to this spiraling increase in road maintenance needs are: - Decrease the standard of the roads. Maintenance of passenger car roads is five times more expensive than maintenance of high clearance roads. - Close or decommission more roads. Road decommissioning is typically two to three times more expensive than road closure when discounted over a ten-year period. For economic reasons, the Forest has been focusing on road closures. - Seek alternative funding sources for road maintenance. The Forest roads engineering department has aggressively pursued the first two alternatives listed above. The Forest has been less successful at generating additional funds for road maintenance, although partnerships have been helpful. # **Range Management** # **Monitoring Goal** On lands determined as suitable and capable of producing range vegetation and within constraints imposed by Forest Plan Standards and Guideliness, provide forage for use by permitted domestic livestock. # **Existing Condition** Approximately 155,625 acres or 15% of the total acres on the Mt. Hood National Forest comprise five active grazing allotments. **Vegetative composition** within these allotments is a mosaic of grass and shrub lands, meadow complexes, timbered areas, and harvested timber lands. Harvested lands in these allotments generally produce forage for about twenty to thirty years before the overstory canopy (trees) re-grow and again dominate the site. This is called "transitory range". **Economic goods and services** are provided to communities through the issuance of grazing permits to local ranchers. A stable consistent supply of summer forage on National Forest land adds an element of economic viability to these ranch operations (base property). Notably, the base property held in private ownership provides essential big game winter habitat for deer and elk and other wildlife species, which can be in critically short supply during winter. # Monitoring Questions, Activities, and Evaluation Are AMPs (Allotment Management Plans) being implemented on the ground? AMPs contain several important components, which have been implemented as follows: - 1. Range improvements (fences) were constructed or maintained to gain better livestock control and ensure attainment of Forest Plan Standards and Guidelines related to riparian protection and allowable use of vegetation. - Pertinent Forest Plan Standards and Guidelines have been incorporated into every livestock grazing permit. Permittees are responsible for meeting the Terms and Conditions specified in these permits. - 3. If a permittee does not comply with the Terms and Conditions, permit action can be taken against their permit which may involve anything from temporary partial suspension to complete permit cancellation. Are we meeting Forest Plan objectives for range? In the 1990 Mt. Hood NF
Forest Plan, objectives for range were quantified and expressed as an output called "AUMs" (animal unit months) on p. four-14. The projected output for the first decade after this publication was estimated at 7,200 AUMs. The second decade estimated approximately 4,600 AUMs would be permitted on this forest. The total current permitted AUMs are 3,684. This is lower in part due to decisions such as, construction of improvement projects (fences) and minor reductions in numbers to improve resource conditions. Also some permits have been retired due to permittees phasing out their cattle operations, resulting in local decisions not to reauthorize those AUMs. Actual livestock use for the 2009 season was 1,645 AUMs. This number reflects that three out of six permittees took "non-use" for the grazing season. # Results of Monitoring # Long Term Vegetative Trends (Effectiveness Monitoring) An important aspect of ecosystem function and productivity within grazing allotments is related to vegetation health. Studies to monitor existing condition (status) and long-term trend in vegetation have been established on all allotments. Numerous methodologies are authorized and approved for use as per direction in the Region 6 FSH 2209.21 – Rangeland Ecosystem Analysis and Monitoring Handbook. The methodology selected typically requires that permanent plots are established and monitored once every 5 to 10 years. This data should record plant species composition and diversity, percent bare soil, plant vigor and other vegetative indicators, which in turn can help interpret trend, the direction of that trend and/or changes over time. It is best to have a minimum of three separate readings in order to make an evaluation of direction of trend. This would mean that after establishing a permanent monitoring plot, between 15-30 years could be needed in order to determine the direction of this trend, depending on the landscape in which it is established in. Under the current methodologies utilized and along with other monitoring data, observations are that overall range vegetative conditions are stable to improving. # Short Term – Forage Utilization Studies (Implementation Monitoring) Forage utilization Standards and Guidelines were developed to ensure that adequate vegetation is left after grazing to provide benefits for a multitude of resources. Plant health and vigor can be sustained if grazed properly. Utilization monitoring studies were conducted on all grazed allotments. These studies are used to monitor the consumption of the current years forage by both permitted livestock and wildlife. Of the fifteen established monitoring sites grazed this season, twelve sites (80%) met utilization standards and guidelines established. The other three (20%) did not. #### Recommendations Monitoring indicates the majority of acres within grazing allotments are meeting or moving toward Forest Plan objectives. While this is a desirable situation, there are interactions and relationships with other resources that merit discussion. Compliance is vital to ensure that instructions given to grazing permittees are implemented on the ground. Funding to accomplish this task is becoming scarcer. Solutions to this problem need to be identified. On allotments where transitory range makes up a substantial portion of the available forage, there is a concern that livestock will rely more heavily on meadows and riparian vegetation as these areas become reforested. Some of these meadows and riparian areas are also heavily used by recreationists and provide important wildlife habitat. These trends and potential conflicts need to be analyzed through the NEPA process as we proceed with updating AMPs, resulting in appropriate decisions that will result in beneficial outcomes to all resources as related to livestock grazing. ### **Minerals** # **Monitoring Goal** The monitoring goal is to determine whether the Forest Plan standards and guidelines support and encourage mineral resource activities on the forest that are compatible with other resource goals. # **Existing Condition** This Forest has an abundance of salable minerals and a high demand for that material from the public. The development of this resource is limited to existing rock quarries to avoid conflicts with other resources. The forest has few locatable minerals and little public interest. Leasable minerals on this forest are limited to geothermal resources. Interest in geothermal varies greatly, mostly dependent on the price of energy. # Monitoring Questions, Activities, and Evaluations - Are locatable and leasable mining activities following operation and reclamation plans? - Are salable minerals being removed according to quarry operation or development plans? - Are impacts to mineral resources being assessed during other project planning? # Results of Monitoring There are no currently active locatable or leasable mineral developments on the forest. All 11 inquiries from the public regarding laws and guidelines covering locatable minerals on National Forest managed lands received responses. During FY09, the forest assisted BLM with the development of an EIS that covered geothermal leasing development near Mt. Hood. Most of the minerals activity on the Forest was with salable (common variety) mineral resources. These resources were managed using the Mt. Hood National Forest Rock Resource Plan as a guide. There was 1 project where 700 cubic yards of mineral materials were used by other government agencies. There were 18 projects where a total of 19,740 cubic yards of mineral materials were used by the Forest. All of the major projects had operating plans and were field inspected for compliance with the plans. 100% of the transportation plans were reviewed. When necessary, operating plans were modified to adjust to changing conditions. Operators were not allowed to leave the source until all the requirements of the operating plan had been met. During FY09 there were 19 operating plans completed for current and future projects. There were 118 smaller projects where salable mineral materials were used by the public. These projects removed a total of 80 cubic yards. All the mineral activity took place in currently developed and designated rock quarries in a manner that did not conflict with other resource objectives. Impacts to mineral resources were assessed during the planning phase of road decommissioning projects that could potentially restrict access to those resources. ### **Recommendations** The Forest continues to be able to supply high quality rock products to the general public, other government agencies, and for our own use. Rock is a non-renewable resource; however, this forest has large quantities of high quality rock and with proper resource management, should be able to satisfy demand for many years. Many of our quarries are being depleted of the easily accessible loose material by the continuing demand for "landscape rock" by the public. An effort needs to be made to inexpensively create additional loosened material at those quarries to meet the public demand for small quantities of salable mineral materials. ### STRATEGY C Maintain and enhance the productive capacity of Mt. Hood National Forest to improve the economic well-being of Mt. Hood's communities # **Forest Resources and Timber Supply** #### Goal The goal is to sustain ecological conditions to provide a continuing supply of forest products, and to provide a positive economic return. # **Background** The Forest Plan identified an allowable sale quantity (ASQ) of 189 million board feet per year (MMBF). The Northwest Plan, which amended the Forest Plan, predicted a Probable Sale Quantity (PSQ) of 67 MMBF. In 1995, the PSQ level was adjusted downward to 64 MMBF to reflect the need to protect 100 acre buffer areas around spotted owl activity centers. The current PSQ for the Forest is 64 MMBF. Since the early 1990s and the listing of the spotted owl as threatened species, harvest levels of commercial forest products from the Forest have dropped significantly. In the recent past, nine to eleven local mills bought most of the timber sales. Today, there are approximately five local mills in existence. Potential bidders on today's timber sales come from as far away as Springfield, Oregon to the south, Willamina, Oregon to the west, Vancouver, Washington to the north and even as far away as La Grande, Oregon to the east. In FY 2009, a large portion of the wood harvested from the Forest ended up in local mills within Hood River and Clackamas County. # Monitoring Activities and Evaluation The Forest Plan identified timber objectives to be monitored and evaluated to determine the Forest's capability to provide a continuing supply of wood products. Forest suitability, productivity and modeling assumptions used in determining sale quantity are monitored as well as meeting standard and guidelines for other resource objectives. # Catastrophic Change The Forest Plan monitors catastrophic changes in the amount of standing timber inventory which may result from disturbances, such as fire, windstorms, and insect outbreaks. These large changes can affect the allowable sale quantity calculations and the ability to meet other resource objectives. The Forest Plan assumes up to 2% of the suitable landbase can be impacted by disturbances that result in a total loss of harvestable inventory and that no more than 10% of a management area working group would be affected. The purpose of monitoring is to maintain a record of cumulative changes of timber volume loss on suitable lands due to a total loss of timber inventory. # Annual Aerial Insect and Disease Detection Survey Bark beetle outbreaks have caused significant amounts of tree mortality on the Forest and adjacent lands for the last ten years or more. Approximately 181,000 acres, or sixteen percent, of the Forest have significant levels of dead trees from bark beetle activity. There are approximately 308,000
acres of affected lands, including lands immediately adjacent to the Forest, namely the Confederated Tribes of Warm Springs Reservation. Most of the mortality is comprised of lodgepole pine killed by mountain pine beetle (*Dendroctonus ponderosae*) and true firs killed by balsam woolly adelgid (*Adelges piceae*), fir engraver (*Scolytus ventralis*), and silver fir beetle (*Pseudohylesinus sericeus*). Mortality estimates are comprised, to a lesser extent, of other tree species including ponderosa pine, western white pine, whitebark pine, Douglas-fir, mountain hemlock and Engelmann spruce. Mortality from mountain pine beetle is declining since the outbreak has killed most of the host habitat. Still, there are areas of lodgepole pine likely to killed within the next year or two such as near Summit Lake and there was an increase in mortality near Government Camp. In addition there has been an increase in mortality in young ponderosa pine and potential for further increase in mortality of both young ponderosa pine and whitebark pine. In 2009, there has been a marked decrease in acres affected from balsam woolly adelgid in true firs, as well as declines in larch casebearer, and western pine beetle. The tree mortality map (located in Appendix E) summarizes the cumulative data from the annual aerial survey program to depict levels of insect-caused mortality that has occurred over the last ten years. The number of acres in each mortality class for the Forest and adjacent lands are in included in Table 10. Table 12 includes the number of acres in each mortality class for the Forest lands alone. Table 11: Mortality class for Mt. Hood National Forest and adjacent lands. | Dead Trees per Acre | Acres | |---------------------|---------| | <= 5 | 210,286 | | > 5 and < 10 | 27,176 | | > = 10 and < 25 | 42,385 | | >= 25 and < 50 | 20,604 | | >= 50 | 7,830 | | Total | 308,281 | Table 12: Mortality class for Mt. Hood National Forest lands. | Dead Trees Per
Acre | Acres | |------------------------|---------| | < = 5 | 128,216 | | > 5 and < 10 | 15,900 | | >= 10 and < 25 | 23,634 | | >= 25 and < 50 | 10,203 | | >= 50 | 2,799 | | Total | 180,752 | Field checks and a limited number of studies indicate that aerial surveys underestimate actual mortality by approximately one third. Thus, the number of dead trees per acre should be considered a conservative estimate. Additional detailed information, including annual maps, accompanying data, and how the aerial survey is conducted, is located at: www.fs.fed.us/r6/nr/fid/as/. # **Productive Capability** The productive capacity of a forest is critical to providing a continuing supply of wood products and is strongly linked to sustainability issues given the importance of the forest's contribution to carbon sequestration and climate change. The Forest Plan monitors accomplishments of management practices programmed to contribute to future sale quantity. Examples of these capital investments/management practices include reforestation and timber improvement activities which contribute not only to future sale quantity, but to long-term productive capacity, forest health, carbon sequestration, and other resource objectives which help to maintain sustainable conditions. Insects and disease are also monitored to determine trends and impacts to forest growth. # Forest Growth and Mortality The Pacific Northwest Current Vegetation Survey (CVS), along with Forest GIS layers of land allocations, can be used to estimate the current standing inventory of the Forest and annual rates of growth and mortality. Tree growth rates can be used as estimates of productive capacity. Productivity includes storing energy from the sun via photosynthesis in carbon based biomass, and also includes secondary productivity via respiration. In addition, one measure of sustainability is whether the level of timber harvest is considered sustainable in terms of forest growth. The following pie chart displays the net annual growth, annual mortality and harvest for 2002. After the CVS plots are re-measured and the data processed, the chart will be updated, however percentages are expected to be relatively similar. Overall, annual growth is more than 13 times that of harvest and yearly mortality exceeds harvest by a factor of 8 to 1. On Matrix lands only (outside of Riparian Reserves), growth is almost 3.7 times the rate of harvest. This indicates that timber harvest, by removing trees from the Forest, is having a very small effect on net productivity while management practices, such as thinning and reforestation, are contributing to increasing growth rates. The lack of harvest, however, may be contributing to increased mortality resulting in both positive and negative ecological benefits. In Oregon, tree growth exceeds harvest rates overall by a wide margin and the Forest follows a similar trend (Forest Fact Book, Oregon Forest Resources Institute, 2003 edition). Thousand Cubic Feet (MCF) Figure 15: Growth, mortality and harvest on Mt. Hood National Forest. The mortality is comprised mainly of the smaller trees related to suppression. Mortality also includes larger trees that have died as a result of insects, disease, or other factors. Tree mortality contributes to nutrient cycling through decomposition of organic matter. The standing and downed wood is habitat for many species. Some mortality can be viewed as a loss of economic product and industrial based approaches to forestry attempt to capture potential loss of mortality via commercial thinning. Large amounts of mortality can become a hazardous fuels concern. # Stand Improvement Activities Stand improvement activities are monitored as they contribute to the future allowable sale quantity and increase long-term capacity of forest land by promoting healthy stand conditions and growth. They include pre-commercial thinning, pruning, and fertilization. Pre-commercial thinning (PCT) can greatly influence the future trajectory of the stand in terms of species composition as well as horizontal and vertical arrangement. Prescriptions generally call for retention of minor species and a 25% or more variance in spacing. This allows for greater species and structural complexity in the stand. Pre-commercial thinning needs continue on the Forest as stands regenerated 10 to 20 years ago have grown to the size where thinning treatments are needed. Currently, there is approximately 9,000 to 13,000 acres of pre-commercial thinning need. However, funding priorities in the region is for reforestation need, especially after large scale fires. A stable funding source will be necessary to maintain a productive young stand thinning program and reduce the backlog of acres needing thinning. In FY 2009, the Forest accomplished 1,792 acres of young stand thinning or PCT. The forest continues to fund pre-commercial thinning treatments primarily through the use of Stewardship Contracting authorities and Payments to the Counties funding. # **Modeling Assumptions** The Forest Plan relies on complex analysis to determine the amount of timber to harvest. Changes in land allocations, better knowledge of productive capacity acquired through project level planning, and cumulative effects may reveal a need for adjustments during the plan period. The purpose of monitoring harvest rates is to see whether modeling assumptions used to determine sale quantities and rotations lengths are appropriate and translate well to project level planning. Modeling assumptions strive to estimate the effect of standards and guidelines on harvest volume and monitoring will provide a foundation against which achievement of the standard and guidelines can be tested. # Harvest Rates by Management Allocation In 2009, harvest occurred on 694 acres, which equals less than one tenth of a percent of the total acreage on the Forest; a harvest rate well below the annual probable sale quantity. The harvest occurred within several Northwest Forest Plan land allocations to meet a diversity of resource objectives. Sixty one percent occurred within Matrix, twenty three percent within Late Successional Reserves (LSR), eight percent in Riparian Reserves, and eight percent in administratively withdrawn areas. As displayed in the following tables, 52% of the 2009 harvest occurred in B allocations where timber production is a secondary goal. For 2009, these include B2 scenic viewshed, B6 special emphasis watershed, B10 winter range, and B1 Designated Wild and Scenic Rivers. 39% of the harvest occurred in C1 timber emphasis. Table 13: Percent of acres harvested by management area category. | Management
Area
Category* | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | |---------------------------------|------|------|------|------|------|------|------|------|------|------|------| | Α | 0 | 2 | 1 | 0 | 13 | 0 | 5 | 0 | 0 | 0 | 9 | | В | 33 | 29 | 28 | 60 | 37 | 47 | 25 | 66 | 59 | 71 | 52 | | С | 66 | 69 | 71 | 40 | 50 | 53 | 70 | 34 | 71 | 29 | 39 | | D | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ^{*} Management Area Category (MAC) A: Primary resource emphases other than timber production; MAC-B: Primary resource emphases other than timber production, but regular timber production is planned; MAC-C: Timber production is the primary emphasis; MAC-D: Management areas within the Bull Run Watershed Management Unit. Table 14: Acres harvested by Forest Plan Management Area in FY 1998-2009. | Management
Area
Category | 1999 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | |--------------------------------|------|------|------|------|------|------|------|------|------|------|------| | Α | 0 | 73 | 11 | 0 | 149 | 0 | 126 | 0 | 0 | 2 | 68 | | В | 897 | 960 | 223 | 374 | 371 | 422 | 625 | 1383 | 465 | 429 | 359 | | С | 1762 | 2257 | 574 | 246 | 509 | 485 | 1774 | 700 | 318 | 177 | 268 | | D | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | Total | 2659 | 3290 | 808 | 620 | 1029 | 907 | 2525 | 2083
 783 | 608 | 695 | ### Compliance with Timber Standards and Guidelines The overall objectives of the Monitoring Plan are to determine if programs and projects are meeting Plan direction and to keep the Plan viable. Standards and guidelines are monitored to see if they are being followed and whether they are effective in meeting their intent. #### Harvest Methods The Forest Plan tracks harvest methods being used to determine compliance with Forest Plan standards and guidelines which specifies a range of harvest methods should be considered and that resource objectives relating to harvest methods are being met. In 2009, commercial thinning was the harvest method on 88% of the acres, shelterwood harvest 9%, and selection harvest 3%. In the last decade, there has been an overriding shift from regeneration harvest to commercial thinning. Figure 16 and Table 15 display harvest methods utilized over the last ten years. For example, more salvage harvest occurred in the late 1990's due to an increase in Douglas-fir beetle caused mortality that occurred after several wind events. Selection harvest, shelterwood harvest with reserves and commercial thinning continue on the eastside of the Forest to lessen the susceptibility to forest insects and to reduce disease and hazardous fuels. On the westside, commercial thinning has increased as stands that were regenerated 30 or more years ago have grown to plantations of commercial size. Figure 16: Acres treated by harvest method. Table 15: Harvest method by year. | Year | Regeneration | Salvage/Sanitation | Eastside Selection | Commercial | |---------------|--------------|--------------------|--------------------|-------------| | Harvested | Harvest* | Harvest | Harvest | Thinning | | 1999 | 319 | 319 | 931 | 1,090 | | 2000 | 519 | 261 | 843 | 1,622 | | 2001 | 8 | 0 | 194 | 606 | | 2002 | 118 | 0 | 0 | 502 | | 2003 | 30 | 0 | 26 | 1,003 | | 2004 | 297 | 0 | 0 | 620 | | 2005 | 216 | 8 | 0 | 2302 | | 2006 | 203 | 549 | 61 | 1270 | | 2007 | 59 | 0 | 92 | 634 | | 2008 | 0 | 222 | 20 | 366 | | 2009 | 59 | 0 | 23 | 612 | | 11 Year Total | 1828 (11%) | 1359 (9%) | 2190 (14%) | 10627 (66%) | (Regeneration harvest includes shelterwood harvest and regeneration harvest with reserves) # Meeting National Forest Management Act Reforestation Requirements Reforestation practices are monitored to ensure that areas harvested are adequately restocked within five years of a final harvest (36 CFR 219.27). Reforestation practices are also monitored to ensure that planted tree species maintains genetic diversity and provides for compositional diversity similar to that existing naturally for the planning area with considerations for natural regeneration. The Forest accomplished 196 acres of reforestation in FY 2009. Reforestation continues on a downward trend which is directly related to the decreased level of regeneration harvest and the decreased level of timber harvest overall. All 196 acres of planting occurred on the eastside of the Forest and included small group openings mixed throughout harvest units. No harvest method requiring reforestation in 2009 occurred on the westside of the Forest. A diversity of species was planted with additional species diversity expected from natural regeneration of shade tolerant species, such as western hemlock. Species diversity increases resilience to host specific insects and disease and increases the structural diversity within a stand. Six conifer species were planted: Douglas-fir, ponderosa pine, western larch, western white pine, noble fir, and Engelmann spruce. In addition, western red cedar was planted for stream and road restoration projects. All of the acres planted were with seedlings from known seed sources and genetically diverse seed lots. The western white pine was planted from stock that is resistant to white pine blister rust, thus enabling restoration of this species. Whitebark pine seedlings are being grown for post fire restoration near Cloud Cap Inn and as part of the whitebark pine restoration strategy for the Pacific Northwest Region. The overall first year survival of the planted seedlings was very high, from 85 to 100%. Based on initial survival stocking surveys and expectations for more seedlings to naturally seed in from surrounding stands, the five-year regeneration requirement should be met on all units. Some of the units on the eastside may need additional inter-planting due to pocket gophers, however minimum stocking levels should still be met. Districts are continuing to complete stocking surveys and certify units as adequately stocked. # Monitoring Results Provide a Continuing Supply of Forest Products and Positive Economic Return #### **Timber Harvest** Over the last five years the Forest has been providing a more "predictable" supply of forest products to the region than it has in the past (see **Appendix F**, Mt. Hood National Forest Volume Summary, 1994-2009). In FY 2009 the budget allocation scheduled the Forest to offer for sale approximately 29.9 MMBF (46.7% of PSQ). The Forest offered for sale approximately 30.8 MMBF, and awarded a total of 34.1MMBF. The majority of this volume was awarded as stewardship contracts using "best value" bidding. These projects resulted in a revenue source which will accomplish restoration projects such as fuel reduction projects, road maintenance, road decommissioning, and wildlife habitat enhancement. The Forest also made significant progress on planning projects that accomplish wildfire risk reduction objectives and commercial thinning in overstocked plantations. These planning efforts will result in timber sales and stewardship contracts in FY 2010 and 2011. The best information we have at this time projects the Forest to plan and sell approximately 30 MMBF per year for FY 2010 through 2011. The Forest is striving to provide a predictable level of forest products to the regional economic systems. Nationally and regionally the Forest Service is addressing planning issues that contribute to an unpredictable supply of forest products. Locally, the Forest is addressing planning issues that affect the economic viability of timber sales, which results in sales with no interested bidders. In FY 2010 to 2011 we expect to provide a diverse mix of species, sizes and quality, though the majority will be from smaller sized trees less than 28 inches in diameter. Most of these products will be sold using stewardship contracts due to the support of a wide array of diverse interest groups on the Forest. The Forest continues to plan, prepare and administer timber sales and stewardship contracts using some of the most environmentally restrictive land management guidelines in the world. We are striving to set a global example for sustainable forest management. ### **Special Forest Products** Over the past ten years the Forest has been able to supply moderate levels of firewood and Christmas trees to the local communities as well as the greater Portland area. The Forest has also been able to supply other special forest products for both commercial and personal use. These have included boughs for holiday wreaths, greenery for floral arrangements, mushrooms and others such as carving stock and transplants. Due to the adjacent large population and the high value products available such as noble fir boughs, the Forest has a very large and efficient Special Forest Products program. While these products do not contribute relatively large dollar value to the regional economic system, they do provide for a considerable amount of employment for local workers. In addition, the gathering of firewood, Christmas trees, huckleberries and mushrooms for personal use, is considered by many to be a recreational opportunity, which does provide regional economic benefits. Table 16: Special forest products sold in FY09 | Special Forest Product | Units Sold | Value | |--|------------|-------------| | Firewood Permits | 2721 | \$72,050.00 | | Christmas Trees Harvested- Vendor & Non-Vendor | 3007 | \$15,035.00 | | Bough Permits | 10 | \$479.95 | | Beargrass Permits | 765 | \$22,029.00 | Future budget levels for the Special Forest Product programs are expected to be similar to FY 2009. Demand for these products, which provide recreational opportunities, are expected to increase as the nearby population grows. The Forest is attempting to increase firewood availability through roadside harvesting of dead and down material. The Forest is looking for ways to continue to provide firewood. Christmas trees and bough harvesting opportunities are expected to be limited in the future due to less regeneration harvesting. In other words, the trees planted in the clearcuts 10 to 20 years ago are getting too big to be cut for Christmas trees or produce high quality boughs. The Forest expects to continue looking for opportunities to supply special forest products as the demand arises. Recent indicators suggest that harvesting of plants for bioresearch may expand in the near future. However, our ability to provide these opportunities is dependent on budget allocations, which directly relates to the number of employees assigned to this task. #### Insect and Disease Concerns Significant amounts of tree mortality, primarily from bark beetle outbreaks on the Forest and adjacent lands, have accumulated over the last ten years. Approximately 181,000 acres, or sixteen percent of the Forest landbase, has experienced bark beetle activity contributing to an increased fuel loadings and increased concern over hazardous fuels. Mortality from mountain pine beetle is declining since the outbreak has killed most of the host habitat. Still, there are areas of lodgepole pine likely to killed within the next year or two such as near Summit Lake and Government Camp. In addition, on the eastside of the Forest, there are many acres of second growth ponderosa pine stands which are at or above maximum stocking densities.
These 35 to 40 year old ponderosa pine stands are becoming imminently susceptible to bark beetle attack and are currently being analyzed for a proposed commercial thinning project. Large, old ponderosa pines are at risk of being attacked and killed by western pine beetles, *Dendroctonus brevicomis*, especially in areas with high stand densities due to lack of understory tree removal by either harvest or periodic fires. In the last year or so, the yellowed crowns of dying, large ponderosa pines have been noticed on the eastside of the Forest. Thinning in these areas is necessary where this large structure is important on the landscape. The past outbreak (1983 to 1993) of western spruce budworm (*Choristoneura occidentalis*) affected large acreages of Douglas-fir and true firs and caused some tree mortality, especially in the understory. These trees have now fallen and are contributing to increased fuel loadings. In some places, this is occurring where there is overstory mortality from bark beetles. As a result, there are continuous ladders of high fuel loadings from the forest floor to the standing dead fuels. At the higher elevations, many of the whitebark pines are dying due to a combination of a non-native pathogen, white pine blister rust, *Cronartium ribicola*, and mountain pine beetle, resulting in severe decline of the whitebark pine populations. Many of the whitebark pines are in designated Wilderness Areas on the Forest. There are efforts in the west to select for and propagate rust resistant seedlings for restoration in some areas. Rust resistant seedlings are not available as yet, and it is very difficult to plant and grow these trees at high elevations. Whitebark pine seedlings are currently being grown for post fire restoration near Cloud Cap Inn and as part of the whitebark pine restoration strategy for the Pacific Northwest Region. The northern-most part of the range of sugar pine is located on the Clackamas River Ranger District. A survey of these sugar pine populations was completed during the summer of 2006. In summary, the sugar pine exhibit severe decline due to blister rust and mountain pine beetle. There is very little regeneration, and the surviving regeneration is infected with blister rust. Re-establishing a new population with blister rust resistant seedlings has been recommended by the Area Geneticist. ### **Recommendations** - The vegetation management program should continue planning efforts to meet desired land management objectives and to provide a predictable supply of commercial forest products. This includes thinning or small group selection harvest of eastside stands with insect and disease concerns; thinning of stands in Late Successional Reserves to accelerate development of late successional structure; and thinning commercial size plantations on the westside that both provide forest products and increase the biodiversity and complexity of the stands. Other components of the forestwide vegetation strategy include maintaining or enhancing special habitats such as thinning for huckleberry enhancement and whitebark pine conservation and restoration. - Continue to assess areas on the eastside where stand conditions have changed over time due to fire suppression. Continue integrated planning of silvicultural and fuels treatments to reduce hazardous fuels, modify wildland fire behavior, and restore ecological conditions. Include those areas where there are high levels of insect caused tree mortality that are contributing to hazardous fuels concerns. - Reduce stocking of ponderosa pine stands imminently susceptible to bark beetles. - Continue to pursue a mix of funding sources to accomplish the back-log of young stand thinning. - Pursue active restoration of sugar pine and whitebark pine populations. # STRATEGY D Protect, maintain, and enhance the soil and water resources of the Mt. Hood National Forest. ### **Water Resources** #### Goal A key goal of the Forest Plan, as amended by the Northwest Forest Plan, is to protect and maintain the character and quality of water, providing for long-term sustained production resulting in favorable flows from the watersheds on the Forest. In addition, the unique and valuable characteristics of floodplains, riparian areas, and associated riparian and aquatic ecosystems are to be protected. # **Background** Water quality Best Management Practices (BMPs) and related Forest Plan and Northwest Forest Plan Standards have been developed to achieve compliance with the Clean Water Act and State water quality regulations. A Memorandum of Understanding between the Oregon Department of Environmental quality and the Forest Service recognizes BMPs as the primary mechanism for achieving water quality standards. Water resource-monitoring activities are designed to collect data on water quality trends, assess Forest Service's compliance with the Clean Water Act, and monitor the effectiveness of watershed restoration work, such as road decommissioning. # Monitoring Activities & Evaluation The Forest Plan identified water quality objectives to be monitored and evaluated to determine the Forest's capability to provide for a long-term sustained production of clean water. Forest Plan standard and guidelines for water quality including Best Management Practices (BMPs), cumulative effects, lakes and wetlands are monitored for implementation and effectiveness. # Water Quality Standards and Guidelines During the summer of 2009, watershed specialists conducted implementation monitoring on road decommissioning projects in the Little Sandy, Upper Salmon River, and Middle Fork Hood River watersheds. The purpose of the implementation monitoring visits was to evaluate whether Best Management Practices (BMPs) for road decommissioning projects were being implemented as designed. Extent of road surface decompaction and proper implementation of erosion control work such as seeding and mulch coverage were also evaluated. Watershed specialists found that implementation of BMPs for road decommissioning was being adequately implemented during 2009, but from time to time minor recommendations for improving BMP implementation were made. # Water Quality Trend Monitoring Trend Monitoring is conducted to monitor water quality (temperature, turbidity, pH, etc.) flowing from larger watershed areas over time. Water quality data collected during trend monitoring is not designed to determine whether BMPs are effective for a specific project, but rather to provide information that may be helpful in assessing whether Forest Plan, as amended by the Northwest Forest Plan, standards and guidelines are protecting water quality in a watershed where various resource management and restoration activities have been conducted over a period of time. Trend monitoring also provides important information to determine whether water quality is being maintained or improving over time. ### Water Temperature Water quality standards are regulatory tools used by the Oregon Department of Environmental Quality (DEQ) and the federal Environmental Protection Agency (EPA) to prevent pollution of waters. States are required to adopt water quality standards by the Federal Clean Water Act. States submit their standards to EPA for approval. New, more stringent DEQ water temperature standards went into effect on March 2, 2004. Stream temperature was measured during the summer on 16 sites on the Zigzag Ranger District. In most cases, water temperature was recorded every hour with an Onset brand data logger. In 2009, 12 of the 16 stations monitored exceeded the State standards for fish spawning (13.0°C) or core cold water habitat (16.0°C). This is up from the summer of 2008, when only 6 of the 19 stations monitored exceeded state standards. Water temperature was also monitored on 14 sites in the Fish Creek watershed. Fifteen water temperature probes were deployed in the Fish Creek drainage from July 23, 2009 to October 18th 2009. One temperature probe was lost near a highly used campsite. The maximum water temperatures were generally reported during a heat wave from July 28, 2009 through August 3, 2009. The State standards for core cold water habitat (60.8°F or 16.0°C) was not met at 13 out of the 14 sites monitored during Water Year 2009. Water temperatures in Fish Creek above Calico Creek are cooler, and met the State standard for core coldwater habitat. The Forest completed a Water Quality Restoration Plan (WQRP) for Fish Creek in compliance with the Oregon Department of Water Quality TMDL. All restoration work identified in the WQRP for Fish Creek has been completed. Water temperature was monitored on the following fifth field watersheds: Mill-Columbia (2), Eight Mile Creek (2), and Fifteenmile (1). These water temperature monitoring sites were part of an 18 site water temperature monitoring network required as part of the Oregon DEQ TMDL for the Mile Creeks watershed. The Oregon Department of Fish and Wildlife (ODFW), Soil and Water Conservation District (SWCD), and, Columbia RiverKeepers are collecting water temperature data in the lower reaches of the watershed. All applicable water temperature standards were met for the period of time water temperature was being monitored for all of the monitoring sites on the Forest. As described above, various streams monitored did not meet one or more of the DEQ water temperature standards, even though these same streams in most cases provide very good water quality for fish. A record-setting heat wave affected Oregon. This extremely warm weather may have resulted in some of the streams exceeding the DEQ water temperature standards. There is some uncertainty if the streams that do not meet one or more of these standards would have met these standards prior to the onset of various resource management activities. Where past management activities did result in stream shade removal, these areas are rapidly recovering stream shade, which will eventually result in lower water
temperatures. # Continuous Water Monitoring Stations Clackamas River (Carter Bridge) The Carter Bridge water monitoring station was established in December 1999 to record the water quality of the Clackamas River as water left the Forest and to provide the downstream water providers an early warning of turbidity problems. The station is located on the Clackamas River at Carter Bridge one half mile below the confluence of Fish Creek. Data is recorded at 30 minute intervals for date and time of collection, turbidity, water temperature, depth, specific conductivity, and pH. Water quality data is available via telephone at various Forest and Clackamas River water providers' offices. In March 2005, the U.S. Geological Survey (USGS) began operating this monitoring station with funding provided by the Clackamas River water providers. Average monthly water quality data through September 2009 (end of USGS water year) are listed in the table below. Average turbidity at this monitoring site is relatively low throughout the year, with average values less than 4.0 Nephelometer Turbidity Units (NTUs) during all months except January and May of 2009, when the monthly mean turbidities were 12 and 5 NTUs respectively. During non-storm periods, turbidity is normally between 0.2 and 2.0 NTUs. During stormy periods when the river rises, instream turbidities can increase to about 600 NTUs. The maximum recorded turbidity in Water Year 2009 was 318 NTUs during a high flow event (2 year) on January 2, 2009. Turbidity also reached 165 NTUs during a peak flow event (1 year) on November 13, 2008. Once the turbidity levels peak after a storm, they begin to drop back to normal levels along with a decrease in streamflow. The high levels of turbidity during peak runoff events are due to various factors, the primary causes being mobilization of stored in-channel sediments, erosion of stream banks and the toes of earthflows. In some cases landslides occurring during high stream flows can also cause high turbidity levels. Instream average monthly pH ranged from 7.5 to 7.8, within the DEQ standard (6.5 - 8.5). Daily maximum pH values reached 8.0 on two days in October 2008. The peak water temperature reached about 63.5° F. on July 31, 2009. The seven day average high water temperature was about 63.2° F on that day. Water temperatures were affected by the fact that air temperatures were greater than normal during the summer months of 2009. The monthly maximum mean air temperature was 7° greater than average in June. The average daily water temperature during the summer of 2009 ranged from 52.0° F in June to July with 56.7° F. The State standards for fish spawning (55.4° F or 13.0°C) was met, but the core cold water habitat (60.8° F or 16.0°C) was not met at this site for Water Year 2009. Both standards were met during the previous water year (2008). Overall, water quality is very good at this particular monitoring site on the Clackamas River. Table 17: Water Year (WY) 2 009 Clackamas River (Carter Bridge) monthly water quality parameter averages. | | WY 2009 Water Quality Parameters (monthly averages) | | | | | | |-----------|---|------------------------|-----|------------------------|--|--| | Month | Turbidity (NTU) | Water Temperature (°F) | рН | Conductivity microS/cm | | | | October | 0.5 | 47.5 | 7.8 | 61 | | | | November | 4.0 | 44.6 | 7.7 | 50 | | | | December | 2.4 | 38.1 | 7.6 | 52 | | | | January | 12.5 | 38.9 | 7.5 | 40 | | | | February | 2.2 | 39.0 | 7.7 | 50 | | | | March | 3.0 | 40.1 | 7.6 | 46 | | | | April | 2.9 | 42.3 | 7.6 | 40 | | | | May | 5.4 | 45.9 | 7.5 | 36 | | | | June | 1.6 | 52.0 | 7.6 | 48 | | | | July | 0.8 | 56.7 | 7.8 | 61 | | | | August | 0.7 | 55.8 | 7.8 | 65 | | | | September | 0.7 | 52.3 | 7.7 | 65 | | | ### Eagle Creek An automated water monitoring station was installed in December 2001 on Eagle Creek, just a short distance upstream of the U.S. Fish and Wildlife Service fish hatchery and approximately 4.0 miles downstream of the National Forest boundary. The monitoring station was located as close to the National Forest boundary as possible, but potential influences on water quality from lands in other ownerships downstream of the National Forest boundary may exist. One of the key objectives of this monitoring station is to quantify water quality downstream of National Forest lands on Eagle Creek. Turbidity, water temperature, pH, conductivity, and flow depth are continuously monitored at 15 minute intervals. Data is incomplete for Water Year 2009 due to problems with the data sensor. Average monthly water quality data for Water Year 2009 are listed in the table below. Average turbidity at this monitoring site is relatively low throughout the year (based on previous monitoring), with average values of 2.0 NTUs or less, except for the month of November 2008, when the average turbidity was 10.8 NTUs. The higher than average monthly turbidity for the month of November is the result of a peak flow event (about a one year storm) on November 13, during which time the turbidity reached 547 NTUs during the first peak flow event of the season. Storm events with a recurrence interval of one year or greater result in stream bed and bank erosion which reduce water clarity. Small landslides adjacent to or near stream channels can also occur during heavy rainfall events when soils are saturated. In some cases, measured peak turbidity values may be affected by Eagle Creek Fish Hatchery personnel cleaning leaves and other debris off the intake structure a few feet upstream from the monitoring station. Instream average monthly pH ranged from 7.6 to 8.0 (for the months measured), were within the DEQ standard (6.5 - 8.5). The peak water temperature reached about 71.7° F. on August 2, 2009. The average water temperature during the summer of 2009 (July & August, only) ranged from 58.2° F in July to 60.0.° F in August. As mentioned earlier, the higher water temperatures are due to much warmer air temperatures during the summer months of 2009. The State standards for fish core cold water habitat (60.8°F or 16.0°C) was not met for a number of days at this site for Water Year 2009. Other than a reasonably small deviation from the water temperature standards, water quality is very good at this particular monitoring site on Eagle Creek. Table 18: Water Year (WY) 2009 Eagle Creek monthly water quality parameter averages. | | WY 2008 Water Quality Parameters (monthly averages), Eagle Creek | | | | | | |----------|--|------------------------|-----|------------------------|--|--| | Month | Turbidity (NTU) | Water Temperature (°F) | рН | Conductivity microS/cm | | | | October | 1.4 | 49.2 | 8.0 | 39.0 | | | | November | 10.8 | 44.3 | 7.7 | 36.5 | | | | December | 0.5 | 42.2 | 7.7 | 39.2 | | | | January | * | | | | | | | February | | | | | | | | March | | | | | | | | April | | | | | | | | May | | | | | | | | June | | | | | | | | July | 0.2 | 58.4 | 7.6 | 39.4 | |-----------|-----|------|-----|-------| | August | 0.5 | 60.0 | 7.7 | 42.5 | | September | 0.5 | 55.6 | 7.8 | 43.7. | ^{*}Note: No data in a cell indicates an equipment problem. Monitoring Station operated 20 days in November and 12 days in December. # Instream Bacteriological Sampling Instream sampling for E. coli has been done off and on for several years on Camp Creek at the Mirror Lake trailhead on the Zigzag Ranger District. The monitoring was initially done cooperatively with students and faculty from the University of Portland. Elevated levels of E. coli have been found in the past at this site, so the purpose of the monitoring is to gather baseline data, and then try and identify the upstream source of the bacteria if elevation levels of E. coli are present. This past year the monitoring was done from May 27, 2009 to August 5, 2009. The coliscan E. coli count was less than 50 throughout the sampling period, except for spikes on July 15 and August 5 when the E. coli count reached approximately 178. The Oregon DEQ numeric criteria for E. coli organisms is 406 E. coli organisms per 100 milliters, so all samples taken during 2009 are well within the numeric criteria. Sampling will continue during the summer of 2010. # Mt. Hood Meadows Water Quality Baseline data for the Mt. Hood Meadows Ski Area continues to be collected on the East Fork of the Hood River and Mitchell Creek on the Hood River Ranger District. This effort consists of two monitoring stations owned and operated by the Mt. Hood Meadows ski area, which have been operating for about eighteen years. Turbidity, water temperature, conductivity, and stage are monitored continuously. Total suspended solids are also sampled once each day. The Mt. Hood Meadows staff checks the monitoring equipment approximately once each week, and reviews the monitoring data for abnormal readings. # Stream Discharge (Outside of Bull Run) The Forest watershed staff has re-established a discharge measurement gage at a previously decommissioned USGS gaging station on the Upper Clackamas River at Big Bottom. This site will also be used to characterize the hydrology of the watershed, and the data is sometimes used for special studies in the watershed. # **Cumulative Watershed Effects Analyses** Hydrologic function and watershed condition, like other landscape function indicators, provide us information about the watershed's ability to resist and recover from disturbances and to filter and maintain water quality. Hydrologic condition describes an analysis of watershed characteristics focused on physical and ecological processes affecting the timing, quantity, and quality of stream flow. The Forest Plan relies on cumulative effects analyses which incorporate watershed characteristics to determine watershed conditions and hydrologic recovery. Effectiveness of modeling tools use to predict watershed conditions and hydrologic recovery and
implementation of standard and guidelines are monitored for effectiveness in minimizing potential adverse effects from disturbances. During 2008 and early 2009, a watershed cumulative effects analysis was completed for the Rethin Environmental Assessment on the Clackamas River Ranger District and the Lake Branch Thin on the Hood River District using the Aggregate Recovery Percentage (ARP) methodology. A non-ARP cumulative effects analysis was completed for the Forest-wide OHV management plan, Clackamas River Road decommissioning for habitat restoration, increment 1, 2009, 2009 Clackamas Restoration Projects, and the North Fork Mill Creek Restoration Project Environmental Assessment. The watershed cumulative effects analysis for all the above listed projects which included an ARP analysis indicates the post project ARP would be within the guidelines set forth by Forestwide standard and guidelines FW-063 and FW-064 pertaining to cumulative watershed effects. #### Recommendations - Continue implementation of the Best Management Practices Evaluation Process (BMPEP), and implementation/effectiveness monitoring of road decommissioning projects. - Continue both baseline water temperatures monitoring Forestwide. For those streams identified as exceeding state water quality temperature standards, do additional monitoring in 2011 as opportunities arise, and funding permits, to determine if the water temperatures are naturally elevated. If the elevated water temperatures are a result of management activities or wildfire, evaluate restoration options. Cooperate, when funding permits, with the Oregon DEQ for monitoring water temperature as part of the TMDL implementation process. Continue operating the continuous water quality monitoring station on Eagle Creek. # **Soil Resources** #### Goal The primary goal of soil management is to maintain or enhance soil productivity while conducting forest management activities. # **Background** Monitoring and evaluation of soil resource conditions, both before (soil disturbance generated by previous management activities) and following management activities, is an important component of establishing soil management objectives, developing soil management prescriptions, and in determining how effective our practices are in meeting Forest Plan standards and guidelines. Soil quality standards are used to guide the selection and design of management practices and prescriptions on a watershed scale. Cumulative effects on ecosystem sustainability and hydrologic function are evaluated with the addition of proposed actions. Organic carbon is an important energy source for the microbiological component of the soil ecosystem. Organic matter in the form of large wood on the forest floor or smaller woody material, including the litter layer, is important sources of organic carbon. Maintenance of carbon cycling through conservation of large wood material is addressed through the Forest Plan standards and guidelines identified for wildlife habitat needs. The results of monitoring for large wood are presented in the wildlife section. # **Monitoring Activities & Evaluation** The Forest Plan identified soil objectives to be monitored and evaluated to ensure the productive capacity of the soil resource is being maintained through time. Standards and guidelines in the Forest Plan address the physical and biological aspects of soil productivity which include percent soil disturbance within an activity area, effective soil surface cover, litter layer consumption after a fire, and total above soil organic matter content. Standards, specific to maintaining physical soil quality properties, require that no more than 15% of an activity area is to be in a degraded condition from the combined impacts of compaction, displacement, or severe burning. As in previous years, two needs guided the direction for soil monitoring in 2009. First, the need to continue to monitor those areas where vegetation management has occurred so that cumulative effects can be documented. Second, using monitoring data to evaluate planning areas and specific stands proposed for timber harvest/fuel reduction activity so that effects can be better predicted. Eight harvest units were monitored for detrimental soil impacts from ground based logging systems and fuel treatments. All were within the standard, even though many units had previous harvest activity, as summarized in the table below. Table 19: Measured detrimental impacts by silvicultural treatment and logging system. | Silvicultural
Treatment | Logging System | Fuel Treatment | Previous Entries | Percent Soil
Impacts | |----------------------------|----------------|----------------|------------------|-------------------------| | Thinning | Tractor | Landing pile | >2 | 9 | | Thinning | Tractor | Landing pile | >2 | 6 | | Thinning | Tractor | Grapple pile | None | 9 | | Thinning | Tractor | Grapple pile | 1 | 3 | | Thinning | Tractor | Grapple pile | 1 | 3 | | Thinning | Tractor | Grapple pile | 1 | 6 | | Thinning | Tractor | Grapple pile | None | 4 | | Salvage | Tractor | Landing pile | 1 | 6 | Six planning units were monitored to evaluate current detrimental soil conditions so that an accurate prediction of impacts could be made. All six had been clearcut decades ago and are proposed for commercial thinning. Existing detrimental soil conditions ranged from 1-3%. Monitoring results in 2009 as compared to previous years continues to suggest that substantial progress has been made with regard to the detrimental soil condition standard. This trend is likely due to two main factors. First, sale administrators and operators are continuing to do a very good job of minimizing soil damage. And second, equipment technology has reduced compaction impacts. #### Recommendations Monitoring to determine cumulative effects should continue in order to find out whether this trend will continue. Existing conditions monitoring and documentation needs to continue also in order to provide a sound basis for cumulative effects estimation in NEPA documents. Units monitored for existing conditions should also continue to be tracked and monitored as harvest, fuel treatment, and rehabilitation (if needed) occur in order to verify estimates made in NEPA documents. # STRATEGY E Contribute to the conservation of diverse native plant and animal populations and their habitats in Mt. Hood National Forest. # **Fisheries Program** #### Goal There are two primary goals identified in the Forest Plan for the Fisheries Program. They are: - To protect, maintain, or enhance the natural characteristics and functions of rivers and streams, floodplains, wetlands, and riparian areas to assure the long-term sustainability of diverse, native fish and aquatic species assemblages across the Forest; and - 2. To maintain or increase fish habitat capability and assure long-term, sustained aquatic ecosystem health. # **Background** The Forest is situated in the mid and upper headwaters of several key watersheds that provide a home for anadromous (ocean-going) fish, such as salmon, steelhead, and lamprey as well as resident species, such as trout, whitefish, and sculpins. There are over 1,600 miles of fish-bearing streams on the Forest with approximately 300 miles supporting anadromous (i.e., ocean-going) populations of salmon and steelhead. The primary river basins on the Forest include: - Clackamas River Basin - Sandy River Basin - Hood River Basin - Fifteenmile Creek Basin - White River Basin (Deschutes River system) The federal lands, predominately Forest Service, comprising these river basins make up the vast majority of land ownership in the mid and upper watershed, with urban areas located in the lower watersheds. Federal lands, on average, comprise from two-thirds to three-quarters of the total land ownership in these river basins, thereby emphasizing the critical importance of the aquatic habitat conditions on the Forest and the important role the Forest provides for the conservation and restoration of aquatic species. The aquatic resources monitoring program is the starting point to track the status of populations of concern, such as the Endangered Species Act (ESA) listed fish; develop long term data sets on migration and population trends; and for conducting effectiveness monitoring for restoration projects designed for habitat recovery and long term sustainability of fish populations. Federally-listed fish species on the forest include steelhead, coho, Chinook, and bull trout. # Monitoring Activities and Evaluation The overall objectives of the Monitoring Plan are to determine if programs and projects are meeting Forest Plan direction and to keep the Forest Plan viable. Standards and guidelines are monitored to see if they are being followed and whether they are effective in meeting their intent. For the fisheries program, Standards and Guidelines, as amended by the Northwest Forest Plan, were designed to maintain or enhance aquatic habitat complexity and fish habitat capability. # **Aquatic Habitat Complexity** The Fisheries Program monitoring activities provide information upon which to evaluate the trend in aquatic habitat conditions over time and to track the status (abundance, diversity, and distribution) of individual fish populations of concern. Watershed scale (fourth field watersheds, such as the Sandy River Basin; and fifth field watersheds, such as the Salmon River) monitoring is completed through two programs; (1) the Mt. Hood Stream Inventory Program, and (2) the Aquatic and Riparian Effectiveness Monitoring Program. ### **Provincial-level Stream Inventory Program** The Mt. Hood National Forest Stream Inventory program is a part of a provincial program that includes the Gifford Pinchot National Forest, and Columbia River Gorge National Scenic Area. Annual stream inventories are completed to collect information on stream conditions, including habitat typing (e.g., pools, riffles, glides), riparian and
upland vegetation, management activities near the stream, streambed composition, and fish species presence. Each year, fish biologists on the forest evaluate monitoring and information needs, such as project level planning or updating a Watershed Analysis document, and choose the streams to be inventoried. This information is compiled into a report for each stream to give fisheries biologists a snapshot of aquatic habitat conditions. Over time (i.e., every 10 to 20 years, depending on the inventory rotation cycle) streams are resurveyed and then fisheries biologists are able to compare and contrast changes in aquatic habitat conditions that result from either natural or human-related factors. This provides fisheries biologists a tool to evaluate trends and determine if the Forest is meeting aquatic habitat standards and guidelines. Table 20: 2009 Aquatic Inventory Program for the Mt. Hood National Forest | Stream Name | Aquatic Inventory (in Miles) | Aquatic Biota
(in miles) | |-------------------------|------------------------------|-----------------------------| | Clear Creek (Barlow RD) | 13.0 | 13.0 | | McCubbins Gulch | 2.0 | 2.0 | | East Fork Hood River | 14.2 | 0 | | Dinger Creek | 3.0 | 3.0 | | Total | 32.2 | 18.0 | ### **Aguatic and Riparian Effectiveness Monitoring Program** The Aquatic and Riparian Effectiveness Monitoring Program (AREMP) is a multi-federal agency program developed to assess the effectiveness of the Aquatic Conservation Strategy (ACS) of the Northwest Forest Plan. The objective of the ACS is to maintain or restore the condition of watersheds in the Northwest Forest Plan area. AREMP tracks changes in watershed condition over time; and reports on the Forest Plan's effectiveness across the region. The AREMP program is sampling and evaluating ten 6th field watersheds on the Mt. Hood National Forest. In 2009, sampling included surveys of Middle Fork of the Bull Run River (HUC 170800010506) on the Zigzag Ranger District and Pot Creek (HUC 170900110401) on the Clackamas River Ranger District. The evaluation of this data is still under refinement. Information and annual summary reports for the AREMP program is found at http://www.reo.gov/monitoring/reports/watershed/aremp/welcome.htm Monitoring goals are to produce a 15-year assessment of watershed condition and trend, with an expected completion date of fall 2010. Federal land portions of every 6th-field watershed (with at least 25% federal ownership) will be monitored and evaluated every 5 years; a total of over 1370 watersheds. A preliminary assessment of the first 10 years of the Forest Plan indicates that overall aquatic habitat conditions gradually improved between 1994 and 2004 (Gallo et al, 2005). This monitoring has shown that road densities are decreasing slightly and riparian and upslope vegetative conditions are gradually improving. There were very few areas where negative habitat trends were discovered, and those areas included watersheds that had recently experienced large forest fires. # Fish Habitat Capability Anadromous fishes have complex life histories, which include freshwater, estuarine, and ocean phases. Monitoring information is used to better understand life histories of different populations; assess population abundance and distribution; and focus recovery efforts for ESA-listed species. Monitoring activities to track the status of individual fish populations of concern are conducted in partnership with other federal, state, and tribal governments. Specific biological monitoring of individual fish populations is coordinated at the river basin scale across land ownership boundaries to ensure collection of meaningful data on population characteristics and demographics specific fish species that are migratory (anadromous or fluvial) in nature. The table below lists broad-scale monitoring programs by fourth field watershed which track long-term trends of aquatic species and their habitats on the Forest. In 2009, salmon, steelhead, bull trout and coastal cutthroat populations were monitored in the Clackamas, Hood River, and Sandy River basins. Table 21: Multiple year fish monitoring projects for the Forest. | Fourth Field Basin Name | Project Name | Objective | | | | |-------------------------|--|------------------------------------|--|--|--| | Clackamas River | Smolt trapping and population estimates | Long-term population monitoring of | | | | | | of coho and steelhead in Fish Creek, Oak | out-migrating salmon and | | | | | | Grove Fork, Roaring River, North Fork | steelhead smolts | | | | | | Clackamas, Eagle Creek, Clear Creek | | | | | | | and Deep Creek | | | | | | | Salmon Carcass Nutrient Restoration | Nutrient level and biological | | | | | | | response to salmon carcass | | | | | | | additions | | | | | Hood River | Bull Trout Population Monitoring | Establish and document changes | | | | | | | in bull trout populations | | | | | Fifteenmile/White River | Spawning Surveys | Long-term monitoring of steelhead | | | | | | | and salmon spawning levels and | | | | | | | trends | | | | | | Fifteenmile Riverkeeper | Monitor response to large-scale | | | | | | | watershed restoration | | | | | Sandy River | Spawning Surveys | Long-term monitoring of spawning | | | | | | | levels and trends | | | | | | Smolt trapping and population estimates | Long-term population monitoring of | | | | | | of coho and steelhead in Still Creek, | out-migrating salmon and | | | | | | Clear Fork and Salmon River | steelhead smolts | | | | | | Salmon Carcass Nutrient Restoration | Nutrient level and biological | | | | | | | response to salmon carcass | | | | | | | additions | | | | ### Coastal cutthroat trout populations monitoring and analysis This project was designed to address three primary questions: - 1. What is the genetic diversity within and among cutthroat populations in small Oregon streams in the Columbia River sub-watershed between Bonneville and The Dalles Dams? - 2. Are there genetic differences in cutthroat populations above and below natural barriers? - 3. What is the extent of hybridization/introgression with rainbow trout, and does the extent differ among populations? Tasks completed in 2009 focused on lab analysis and collecting additional tissue samples from two streams slated for collection in 2008 but not sampled: Indian Creek (located within the town of Hood River) and Cold Springs Creek above Tamanawas Falls. Approximately 50 tissue samples were collected from the former and no cutthroat trout were captured in the latter, even though cutthroat trout reside in the creek below the falls. Thus far, DNA samples from 415 individuals have been processed by the U.S. Fish and Wildlife Service Abernathy Fish Technology Center and received preliminary analysis. Out of 36 microsatellite PCR primer sets tested, 21 loci were utilized to produce robust and reliable genotype information. The genetic samples clustered primarily into two groups, representing O. clarkii and O. mykiss. A fraction of the samples fell between the two clusters, confirming that hybridization is occurring in some sympatric populations. F_{st} values were significantly greater than zero between all collections indicating limited gene flow between streams. The preliminary results of the project suggest that cutthroat populations in different streams are genetically distinct, even those within the Hood River Basin. In total there are 956 cutthroat genetics samples that have been collected and have been or are currently funded for genetic analysis. ### Smolt production monitoring in the Sandy River Basin. Monitoring goals include the assessment of annual smolt production of Lower Columbia River (LCR) steelhead, and coho salmon in Still Creek, Clear Creek and Lost Creek of the Upper Sandy River Basin and Little Sandy River. LCR Chinook are also present in the basin, but do not exhibit a smolt life history stage in great numbers. It is believed the majority of LCR Chinook out-migrate from the upper basin as fry, either rearing lower in the Sandy River Basin or perhaps the Columbia River estuary. Out-migrant smolt monitoring is conducted through three rotary screw traps operated from April-June each spring. Fish are enumerated, weighed, measured, and mark for attaining annual smolt population estimates. This project is a part of a multi-agency partnership monitoring effort between the Forest Service, Oregon Department of Fish & Wildlife (ODFW), Portland General Electric (PGE), and the Sandy River Basin Watershed Council (SRBWC). | | 1992
to
1999 | 2000 | 2001 | 2002 | 2003 | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | |------------|--------------------|------|------|------|------|------|------|------|------|------|------| | Still Cr | Х | Х | Х | Х | Х | Х | Х | Х | Х | Х | Х | | Lost Cr | | | Х | Х | | | | | | | Х | | Clear Fork | | | | | Х | Х | Х | Х | | | | | Salmon | | | | | | | Х | | | | | | L. Sandy | | | | | | | | | Χ | Х | | | Clear Cr | | | | | | | | | | | Х | | Zigzag | | | | | | | | | | | | | Camp Cr | | | | | | | | | | | | Table 22: Rotary screw trap locations on streams in the Upper Sandy Basin from 1991 through 2009. The Still Creek trap has been in operation since 1992 and represents the longest-running data set for smolt trap monitoring in the basin. With the decommissioning of the Marmot Dam in 2007 on the Sandy River, smolt trap monitoring at Still Creek will provide crucial post-decommissioning data for assessing success of dam removal in aiding recovery of TES fish species. With the decommissioning of the Little Sandy River dam in 2008, continued smolt trapping on the Little Sandy will also be crucial for assessing recovery of TES fish and effects of dam decommissioning. Trapping will also allow an opportunity for DNA analysis of out migrants so that recolonization and recovery of steelhead after dam removal can be better assessed. Still Creek population estimate: The 2009 smolt population
estimates for Still Creek were 3,758 coho salmon and 1,205 steelhead. The Zigzag Watershed Analysis Revision 2004 estimated the smolt-to-adult survival rates of 3% and 6% for coho salmon and winter steelhead, respectively. It should be noted these estimates are largely based on literature, as there is no empirical data for the Sandy River Basin. Estimated average adult escapement for Still Creek based on this data is: 113 coho salmon and 72 steelhead. Correlations of smolt production from the Still Creek trap and adult spawning surveys are inconclusive at this time as there has not been an official review of ODFW's coho and steelhead spawning survey numbers by Forest personnel. The loss of Marmot Dam as a fish enumeration facility has made collecting such data more difficult. Clear Creek population estimate: The 2009 smolt population estimates of Clear Creek were 2,366 coho salmon and 926 steelhead. 2009 was the first year that a smolt trap has been on Clear Creek. The smolts trapped here were similar to those in Still Creek in regards to length distribution, mean weight and temperature at out-migration. This may be indicative of similar rearing conditions in both streams in terms of food bases, temperature regimes and available cover habitat. The numbers of smolts were lower, but that was expected, as Still Creek has more miles of available anadromous fish habitat upstream of the trap site. Lost Creek population estimate: Unlike the other two creeks, Lost Creek was remarkably unproductive. In 2009, trapping resulted in so few fish that no population estimate could be calculated. Only seven fish were caught during the entire two month sampling period. Of those seven, four were identified as smolts but only one was a definite smolt, with the telltale silvery body. The other three may have been steelhead juveniles. Other than steelhead, one cutthroat trout was captured. No coho were caught in the trap in 2009 nor 2001 or 2002. This may likely mean that coho do not spawn in the mid to upper reaches of Lost Creek, above the trap site. Previous trapping years, 2001 and 2002, resulted in more fish captured than 2009 though still significantly lower than all other trapping locations. Numbers of coho salmon and steelhead captured in the trap were lower in Clear Creek than in Still Creek. This was expected as the miles of available anadromous fish habitat upstream of the trap site is greater in Still Creek than in Clear Creek. Also Still Creek is a larger system, with more flow and likely more available spawning gravels. Still Creek has historically been one of the most productive spawning streams in the Upper Sandy River Basin. However the similar mean length and weight numbers of the smolts may indicate comparable rearing conditions among the two streams such as: similar food bases, temperature regimes, and available cover habitat. This was the first time a trap has operated in Clear Creek and smolt population estimates for coho and steelhead were surprisingly robust. Clear Creek had been more or less overlooked by monitoring in previous years because it runs through private land for many miles and access is difficult. During a 2009 coho spawning survey, Forest personnel were surprised to see the extensive amount of complex, deep pool habitat, large woody debris accumulations, and excellent spawning beds. In contrast, Lost Creek does not appear to have measurable coho or steelhead production with only seven fish caught during the entire two month sampling period. ### **Out-migration Timing by Date and Temperature** The Still Creek coho smolt out-migration peaked on May 18th, 2009 The Still Creek steelhead out-migration peaked on April 20th but had a second notable migration on May 5th, 2009. The Clear Creek coho and steelhead smolt out-migration both peaked on May 7th, 2009 (Figure 1715). Both the Still Creek and Clear Creek coho smolt out-migrations peaked when the recorded water temperature was 5 degrees Celsius (see Figure 1816, below). Figure 17: Coho and steelhead smolt outmigration numbers by date (April 13th through June 19th 2009). Represents the total number of coho smolts and steelhead smolts (and pre-smolts) caught on a given day at the Still Creek and Clear Creek screw traps. Figure 18: Steelhead and coho smolt outmigration by water temperature for Still Creek and Clear Creek in 2009. Temperatures were rounded up to the nearest degree. ### **Ten-Year Analysis** Annual coho smolt and steelhead smolt population estimates show similar trends since 1999 (Figure 19). Limited scale sample analysis in the late 1990's suggests the majority of steelhead smolts are two years in age and the remainder three years. Coho smolts are assumed to be primarily one year old. Scale sample age analysis should be conducted in future years. Figure 19: Population estimates for coho and steelhead smolts for 1999-2009 in Still Creek, Upper Sandy River Basin. A steelhead estimate was not made in 2006 due to a recapture rate of zero. ### Sandy Basin Spring Chinook Spawning Surveys Forest and Oregon Department of Fish and Wildlife (ODFW) fisheries personnel have been collecting spring Chinook spawning data in the Upper Sandy River Basin since the early 1980's. The Salmon River, Still Creek and the Zigzag River have been consistently sampled since 1991 and methods have been constant since 2003. These three streams produce the greatest percentage of the observable spawning activity within the Upper Sandy River Basin. However, in years past the counting and sorting facility at Marmot Dam allowed us to compare the survey data with known salmon counts coming over the dam to achieve an estimate of fish spawning survival. At that time over half the Chinook population was unaccounted for in our surveys and were presumed to be spawning in the Sandy River. The Sandy River lacks good visibility that prevents accurate data collection. With the removal of the Marmot Dam in 2007, we still presume a good number of the Chinook population is spawning within the Sandy River. From September 8th to October 15th of 2009, a joint effort by ODFW and Forest personnel conducted spawning surveys and carcass recovery on the Salmon River, Still Creek and Zigzag River. In addition surveys were conducted on Lost Creek, Clear Creek, Camp Creek, Henry Creek, Devil's Canyon Creek, Cheeney Creek and the Little Sandy River. The spring Chinook population in the Sandy River basin has been heavily supplemented with hatchery stock to allow for intense recreational fishing, and was a negotiated mitigation for the Marmot and Little Sandy dams that blocked or limited natural production in the upper basin. Since 1999, hatchery fish has come from use of in-basin wild stock in an effort to reestablish a native Sandy River stock. The Marmot Dam sorting facility was used to remove hatchery stock from the upriver populations. Since the dam removal in 2007, higher abundances of hatchery fish have been observed in the Upper Sandy Basin that used to be utilized solely by wild populations. Since removal of the Marmot Dam, spawning surveys have become the only way to enumerate wild and hatchery fish escapement numbers in the upper Basin. For the 2009 peak spawning season, 437 redds within the Sandy River Basin were identified. No redds or carcasses were observed on reaches within Clear Creek, Camp Creek, Henry Creek, Devil Canyon Creek, Cheeney Creek, or Little Sandy River from the Audubon to the mouth. Sandy River mainstem was unable to be surveyed due to poor visibility from natural levels of glacial fines. Spawning survey results from 2006 to 2009 are displayed in the table below. Figure 20: Spring Chinook spawning survey results in the Sandy River Basin, 2006 through 2009. (Note: This table contains provisional data provided by ODFW). | Redds/mile | | | | | | | | | |------------|---------------------------------|-----------------------|------|------|---------|------|---|--| | Stream | Area | 2009
Redds | 2009 | 2008 | 2007 | 2006 | % fin-
clipped
carcasses in
2009 | | | Salmon R | Final Falls – mouth | 239 | 18.4 | 53.5 | 14.7 | 19.3 | 19% | | | Still Cr | Bridge 2612 - mouth | 109 | 21.8 | 81.0 | 8.5 | 35.5 | 60% | | | Zigzag R | Camp Cr – mouth | 80 | 14.5 | 46.0 | 10.0 | 10.8 | 42% | | | Lost Cr | Riley Campground - mouth | 9 | 4.5 | 13.5 | 4.5 4.5 | | 62% | | | Other | Clear, Clear Fk, Camp | 1 | 1.7 | 0.5 | 1.2 0.8 | | 0270 | | | Sandy R | Marmot Br – old Marmot Dam site | Unable to be surveyed | | 1.6 | | | | | | Sandy R | Old Marmot site - Oxbow | Unable to be surveyed | | 2.7 | | 7.3 | | | As displayed in the table above, in 2008 a large spike in numbers of hatchery spring Chinook were counted in the upper Sandy basin as this was the first year in which hatchery-origin fish were not stopped at Marmot dam. In 2008, 41% of spawning spring Chinook were comprised of hatchery fish. Prior to the removal of the dam in the fall of 2007, the percentage of hatchery fish averaged less than 3% (years 2002 to 2007). In 2009, based on initial summary of fin-clipped carcasses, 37.6% of recovered fish carcasses were marked hatchery fish. ODFW management goal is to have no more than 10% of the naturally-spawning fish to spawn with hatchery fish. # Clackamas River Bull Trout Re-introduction: Food web baseline assessment pilot project 2009 This project will develop baseline data and food web modeling frameworks for evaluating the effects of the planned (2011) bull trout re-introduction on anadromous and resident salmonids and other key species in the upper Clackamas River basin. This is a 2009-2010 cooperative project between the Mt. Hood National Forest, U.S. Fish and Wildlife Service, Portland General Electric, and Oregon Fish and Wildlife Department. Erin Lowery and David Beauchamp of the Washington Cooperative Fisheries and Wildlife Unit, School of Aquatic and Fisheries Sciences, University of Washington implemented the baseline data
gathering in the Clackamas subbasin. Detailed goals and objectives for this monitoring project can be found at: http://www.fs.fed.us/r6/mthood/publications/documents/ClackamasRiverBullTroutReintroductionFeasibilityAssessment.pdf, and http://www.fws.gov/oregonFWO/Species/Data/BullTrout/ReintroductionProject.asp Study area in 2009 was Oak Grove Fork (1 site), Big Bottom (2 sites), and Pinhead Creek (1 site), as well as North Fork Reservoir. Methods explored and utilized for the monitoring in the reservoir include hydro-acoustics, reservoir gill netting, vertical plankton tows, vertical profiles of light, temperature, and depth-integrated turbidity. Survey methods in the mainstem and tributaries included temperature logging in mainstem and tributaries, standardized snorkeling for large and small fishes, standardized electro-fishing for small fishes, and angling for larger fishes. Study questions were: - 1. How does the upper Clackamas River (North Fork Reservoir to headwaters) food web currently function? - 2. Where are the primary growth habitats for protected salmonids (coho and Chinook)? - 3. Who is eating protected salmonids? - 4. Who is eating the same things as those salmonids? - 5. How will an introduced bull trout population integrate into the food web? #### Answers from the 2009 field season are: - 1. Piscivory (fish getting consumed) primarily occurs in the North Fork Reservoir; there is low piscivory in tributaries (aquatic insects are primary food source for sculpin, cutthroat, coho and Chinook). There is marked differences in food patterns over the 4 seasons, as well as between age classes of the same species. - 2. North Fork Reservoir is important growth habitat for Chinook salmon, but less for coho salmon. - 3. Brown trout are primary predator for protected salmonids while in the reservoir. - 4. Species with similar feeding strategies as protected salmonids are mostly sculpins, as well as cutthroat trout. - **5.** Postulate that re-introduced bull trout will be highly migratory and generalist consumer that will consume the most abundant prey; sculpin, whitefish, dace, and migrating Pacific salmon (seasonally). ### **Bull Trout Population and Life History Monitoring (Hood River Basin)** In 2006, Forest Service fisheries biologists partnered with the Oregon Department of Fish and Wildlife, U.S. Fish and Wildlife Service, and Confederated Tribes of the Warm Spring Reservation of Oregon to develop a comprehensive monitoring plan for bull trout in the Hood River Basin. This is the only known population of bull trout currently existing on the Mt. Hood National Forest. Although bull trout use areas downstream of the forest, the only known spawning area is located on the Forest, within the Middle Fork of the Hood River, largely in Clear Branch Creek and Pinnacle Creeks. The overall goal of this monitoring project is to determine the most effective and reliable adult bull trout population assessment method(s) above and below Clear Branch Dam in the Upper Middle Fork Hood River (MFHR) 6th field watershed. To accomplish the above goal the ODFW, in collaboration with the Mt. Hood National Forest, established the following objectives: - 1. Determine the migratory life history of Hood River bull trout and assess the potential impacts of flow diversions and two new falls on the MFHR (created by the November 2006 glacial outburst flood) on bull trout migrations. - 2. Determine current distribution of bull trout reproduction and early rearing in historical and potential bull trout streams in the Hood River subbasin. - Determine the juvenile and adult life history the Clear Branch local population and develop a statistically reliable and cost-effective protocol for monitoring the abundance of adult Clear Branch bull trout. <u>Objective 1</u>: This portion of the overall study continues PIT tag monitoring that has taken place each year since 2006. In 2009, ODFW PIT tagged both adults and juveniles that were captured in a downstream migrant screw trap that was placed in Clear Branch below Clear Branch Dam from May-June. Adults moving upstream over Powerdale Dam were also PIT tagged and radio tagged. USFS assistance in this portion of the study involved downloading PIT tag readers August – November. <u>Objective 2</u>: Spawning surveys began on 18 August and continued until November 4. In Clear Branch above the lake repeat passes were made every month; in Pinnacle Creek only one pass was accomplished. Forest personnel completed all surveys in Clear Branch with ODFW personnel to develop consistency in redd identification, particularly in light of the fact that spawning surveys will be used as a long-term monitoring method. ODFW found through their survey efforts 2006-2008 that redd identification is difficult in Clear Branch and Pinnacle Creek and that there is possible confusion with relict cutthroat redds. Thus, "zero count" surveys were conducted in both Clear Branch above the lake and in Pinnacle Creek before bull trout spawning began to count cutthroat redds that were still visible. Spawning surveys are designed to achieve the following goals: - Monitor long-term trends in redd numbers as an index of adult abundance (see Objective 3). - Determine bull trout spawning run timing. - Identify stream reaches that are key areas for spawning. <u>Objective 3</u>: To assess life history patterns (movement in and out of the reservoir, length of time spent in Clear Branch, etc.) two methods were used. PIT tag readers placed about 0.3 miles upstream of Laurance Lake, at the confluence of Coe and Clear Branch, and in the Middle Fork Hood River near the confluence with the East Fork Hood River monitored the **FY2009 Monitoring Report** movement of bull trout over 100mm that were PIT tagged by ODFW 2006-2009. Also, a downstream migration screw trap was placed in Clear Branch below Clear Branch Dam from May – June. A population estimate of adult bull trout (>180mm in fork length) was not made via maintaining an upstream-migrant weir trap or by snorkeling in 2009. However, ODFW is currently analyzing the previous three years of data to determine the power of redd count/adult population estimate correlation. Four adult bull trout were captured moving upstream over Powerdale Dam in June, 2009. Of these, two were recaptures: one was initially PIT tagged in Clear Branch above Laurance Lake in May, 2007, and one was initially PIT tagged at the downstream migrant trap in Clear Branch below Clear Branch Dam in June, 2008. It is interesting that the fish from Clear Branch above the lake migrated from above Laurance Lake to below Powerdale Dam (presumably to the Columbia River), and had feeding success (it grew from 123mm in 2007 to 400mm in 2009). Three of the bull trout captured at Powerdale Dam this year were radio tagged, and those without PIT tags were given one. One fish was never found during tracking, perhaps due to tag failure. The remaining two radio tagged fish moved to the lower falls on the MFHR, and only one of them was eventually tracked above the lower falls. This fish sat below the upper falls for about one month and apparently never ascended them. Also, two adult bull trout were observed in Tony Creek (a tributary to the MFHR in between the two new falls) in September, 2009. Three adult and three juvenile bull trout were PIT tagged at the screw trap below Clear Branch Dam in 2009, and one adult bull trout was captured in the East Fork Hood River screw trap. Twenty-five bull trout redds total were counted during spawning surveys in Clear Branch above Laurance Lake completed on August 18 (zero count), September 29, October 20, and November 3. Four bull trout redds total were counted in Pinnacle Creek during spawning surveys completed on September 8 (zero count) and November 4. Based on monitoring efforts over the last several years (trapping, electrofishing, snorkel surveys) it appears redd surveys are the least invasive and easiest method to annually index adult bull trout population trends in Clear Branch and Pinnacle Creek. Over time these spawning surveys will be correlated with adult population estimates conducted every 3-5 years. The total number (and 95% confidence interval) of bull trout adults upstream of the weir trap was estimated to be 93 (±5) in 2007 and 95 (±26) in 2008. Census redd counts were also conducted in upper Clear Branch and Pinnacle Creek and were a consistent index of the adult population (~4 adults per redd). Using this index to expand the census redd count into adult numbers in Clear Branch downstream of the traps and in Pinnacle Creek, we estimated the adult population in upper Clear Branch to be 101 (±5) in 2007 and 116 (±26) in 2008. It is likely that the Hood River bull trout adult population may well be below 150 individuals; an extremely low population level. Further information and reports for Hood River bull trout studies are posted here: http://oregonstate.edu/dept/ODFW/NativeFish/HoodRiverBullTrout.htm #### Recommendations: - Based on stream inventory results, the aquatic habitat conditions for streams and rivers on the Forest appear to be stable and improving. Continued aquatic restoration projects, implemented in collaboration with partners and stakeholders, will further improve conditions and ensure an abundance of high quality habitat on the Forest for conservation and recovery of many fish species in the local region. - The overall abundance of anadromous fish and bull trout is quite low in many of the stream and rivers on the Forest. Hood River bull trout populations are considered to be at high risk of extinction. Actual utilization of habitat by these species is well below the productive capacity of rivers and streams on the Forest. Managers should work with state, federal, and tribal fish managers to: - Address and correct other non-habitat related limiting factors, (i.e., hatcheries, harvest, and hydroelectric practices) affecting migratory and anadromous fish population
levels in the five major river basins on the Forest. - Continue to exercise the Wyden authority to utilize federal resources for making improvements in aquatic habitat conditions in rivers and streams on non-federal lands off-Forest within the five major river basins. - Continue assisting in collaborative fish population monitoring with other agencies and partners. - ODFW management goal is to have no more than 10% of the naturally-spawning fish to spawn with hatchery fish. In the upper Sandy River basin, these goals have not been met in 2008 and 2009 due to the 2007 Marmot dam, and its fish sorting facility, removal. Forest managers should work with the state and other stakeholders in the Sandy River basin to strategize a way to achieve hatchery and wild fish management goals. #### Wildlife and Plants #### **Monitoring Goal** The emphasis continues to be on maintaining persistent and viable populations of native and desirable nonnative wildlife and plant species by: - Protecting and restoring the biological and physical components, function and interrelationships of forested ecosystems; - Protecting and restoring rangeland ecosystems; - Providing quality recreation experiences with minimal impacts to ecosystem stability and condition; and, - Conserving populations of threatened, endangered and sensitive species through recovery and management efforts. #### Monitoring Activities and Evaluation The Forest Plan identified wildlife and plant objectives to be monitored and evaluated to ensure plant and animal diversity is maintained and/or enhanced. Threatened, Endangered, and Sensitive species, ecological indicator species, and sensitive species populations and habitats are monitored as well as implementation of standard and guidelines requiring site protection and special management considerations. #### Threatened, Endangered, and Sensitive Wildlife Species Federally listed threatened and endangered (T&E) species on the Forest are the peregrine falcon, bald eagle and spotted owl. A management goal is to facilitate full recovery of these species on Forest lands. #### Bald Eagle The bald eagle was de-listed as threatened by the U.S. Fish and Wildlife Service in 2007. The eagle population has been expanding and is no longer considered threatened. Bald eagles are primarily a winter migrant on the Forest and there is evidence of past nesting. The Forest Plan designates areas on the Forest for existing and established winter communal roost areas. In 2003, a new bald eagle nest was identified located near Rock Creek Reservoir. The site was occupied and with young in 2003, but not in 2004 - 2008. In 2009 the pair failed at their nesting attempt. It is suspected that the reason for failure is due to high amount of public use at the boat ramp and picnic area near the nest. In 2010 the pair is nesting there again. Signing to inform the public to reduce harassment has proved successful and there are currently two chicks being cared for at the nest. In addition, a new nest was created by the Forest Service and a contractor to provide a location with less public traffic in hopes that the new location will be utilized in the future. The Clear Lake pair did not nest at Clear Lake in 2004 - 2008. A new nest at Timothy Lake, however, is suspected to be the same pair. They did not fledge young in 2004 or in 2005. There was one eagle fledged from the Timothy Lake nest in 2006, 2007, 2008. The nest was reported to be active in 2009 but no count of the number of chicks that were fledged is recorded. #### Northern Spotted Owl The monitoring needs for the spotted owl have decreased with the implementation of the site protection and special management considerations such as the Northwest Forest Plan's 100 acre Late Successional Reserves (LSRs) for *known* northern spotted owl sites and restricted operating season. It is assumed these measures are sufficient to maintain a persistent and viable population of spotted owls. In addition, an interagency demographic study, designed to be statistically significant in monitoring the owl population across its range, has replaced monitoring on individual Forests. The demographic study reported a decline in spotted owls of 2.8% per year for Oregon. In 2009, the Palomar pipeline project employed ABR, Inc to do spotted owl surveys along the proposed pipeline. #### Results: For the 2009 effort, ABR detected on the *mainline route*: - 1 nesting pair (juveniles present) - 4 pairs with unknown nesting status - 1 resident male with unknown pair status - 3 resident single males, - 6 males of unknown status - 2 locations with both males and females present but status undetermined Additional owls from Warm Springs Alternative route (on MHNF): 2 pairs with unknown nesting status 1 unknown (may be overlap with owl in a pair) Total owls: 29 owls Total Pairs: 7 (includes nesting and unknown nesting pairs) Total Nesting Pairs: 1 In a report by Mason, Bruce, & Girard, inc it was reported that, "In 2008, there were a total of 35 northern spotted owl detections, and two unknown Strix sp. detections were recorded in eight of the 12 survey areas. The detections resulted in the location of nine northern spotted owls with an unknown status, two spotted owls with a resident single status, and four pairs of northern spotted owls. It was determined one of the pairs of owls was not nesting." #### Peregrine Falcon In 1999, the peregrine falcon was delisted and is no longer considered threatened or endangered by the U.S. Fish and Wildlife Service. The Forest Service will continue to manage peregrines as a sensitive species. Potential nesting habitat for the peregrine occurs on all Ranger Districts. Monitoring for peregrine nesting in 2009 was confined to the two known nest sites. One of the peregrine sites has been gated and fenced to protect the site from disturbance. A management plan was completed for one site and is in draft form on the other. Nesting efforts was successful at both nest sites. One of the peregrine sites has been gated and fenced to protect the site from disturbance. A management plan was completed for one site and is in draft form on the other. There have been no current efforts to establish presence or absence on new sites. In addition, there are insufficient personnel to survey all of the potential sites. The following table shows the nest success trends for these two sites. #### **HISTORIC NESTING INFORMATION:** | YEAR | R CLIFF | B CLIFF | |---------------------------|---------------------------|---------------------------| | | | | | 2009 | fledged 1 | fledged 1 | | 2008 | failed | failed | | 2007 | fledged 1 | failed | | 2006 | failed | fledged 2 | | 2005 | fledged 2 | fledged 3 | | 2004 | fledged 3 | fledged 2 | | 2003 | fledged 2 | fledged 3 | | 2002 | occupied, unknown outcome | occupied, unknown outcome | | 2001 | unknown status | unknown status | | 2000 | fledged 2 | occupied, unknown outcome | | 1999 | fledged 2 | fledged 2 | | 1998 | failed | fledged 3 | | 1997 | failed | fledged 2 | | 1996 | fledged 2 | | | 1995 | fledged 3 | | | 1994 | fledged 3 | | | 1993 | occupied, unknown outcome | | | Summary: | | | | percent surveyed * | 82% | 77% | | average # fledged ** | 1.50 | 1.80 | | percent successful ***71% | 80% | | ^{*} percent surveyed is the percent of years with known outcomes #### Lynx Lynx is listed as threatened in Oregon by the U.S. Fish and Wildlife Service. The Forest currently has no mapped lynx habitat. Based on trapping records, the Oregon Department of Fish and Wildlife feels this species has been extirpated from Oregon or never existed in the State. Surveys for lynx were completed in 2001 by the Forest Service. No lynx were ^{**} average # fledged is the average number of young fledged (>34 days of age) per year of known outcome ^{***} percent successful is the percent of years with known outcomes that fledged young documented on the Mt. Hood, Gifford Pinchot, Willamette, or Deschutes National Forests. If lynx are present on the Forest, their numbers are extremely limited. Over the past several years, however, there have been about 13 unconfirmed lynx sightings across the Forest. Most, if not all lynx sightings on the Forest, were probably bobcats that have been misidentified as lynx or transient individuals that have left good habitat due to population crashes of snowshoe hares. #### Sensitive Wildlife Species A management goal of the sensitive species program is to ensure that viable populations and genetic variability of sensitive animal species are maintained through time. #### Harlequin Duck Harlequin Ducks were not surveyed in 2009. No incidental sightings of the ducks were reported. #### Cope's Giant Salamander Annual surveys for Cope's giant salamander are conducted on the Forest by volunteers from the Wetland Wildlife Watch. The report is pending for Wetland Wildlife Watch for 2009. There was a report of Cope's by a fisheries biologist from Bear Creek which is a tributary to the Middle Fork. #### Wolverine No rare carnivores (e.g., wolverine, lynx, or fishers) were observed in 2009. #### Common Loon The common loon was removed from the Regional Forester's Sensitive Species List in FY 2001. Surveys were conducted by the Wetland Wildlife Watch coordinator and a Forest Service biologist in 2009. One loon was observed in the Bull Run Watershed. Nest platforms have been installed on Upper and Lower Bull Run Reservoirs, but no nesting has occurred at this time. There was a common loon in winter plumage at Rock Creek Reservoir in 2009 but it was a single bird and no known nesting has occurred there. #### **Ecological Indicator Species** #### **Primary Cavity Excavators** Primary cavity excavators are indicator species for dead and defective tree habitats across all forest types. These bird species actively excavate nest and roost cavities in dead and defective trees providing habitat for a wide variety of secondary cavity nesting animals. The Northwest Forest Plan standards
and guidelines provide for snags and down woody materials which include retention of dead and defective trees in timber harvest units. The purpose of monitoring is to ensure implementation and effectiveness of these standards and guidelines and to monitor wildlife use. Inventories on Clackamas River Ranger District indicate compliance with standards and guidelines and indicate that snags are surviving harvest activities. Surveys appear to indicate that wildlife trees are being used by cavity users, but probably not at the same rate as naturally created snags due to a difference in the way rot occurs in the trees. Additional snag inventories were implemented in 2006 to verify snag counts from insect and disease aerial survey estimates. The results of this study indicate that aerial surveys underestimate snag densities on the eastside of the Forest by approximately a third. Westside data indicate that snag estimates from aerial surveys are poor predictors of actual snags for a variety of reasons. The results of current vegetation survey (CVS) monitoring plots indicate that snag numbers are increasing over time due to the reduced harvest of insect and disease prone areas and continual outbreaks of insects. These naturally created snags are more desirable from a wildlife perspective than man-made snags because they are more prone to heart rot and, therefore, provide more cavities. No snag inventories were completed in 2009 due to lack of funding for a survey crew. #### Pine Marten and Pileated Woodpecker Pine Marten and pileated woodpeckers are ecological indicator species for mature and old growth coniferous forests. The Northwest Forest Plan standards and guidelines provide for management areas to provide adequate amount, quality, and distribution of mature/old growth forest for maintenance of viable populations of species dependent on this habitat. Populations and habitats are monitored as well as implementation of standard and guidelines requiring site protection and special management considerations. Snow tracking efforts (2006-2009) and the cameras surveys (2003-2005) were done in partnership with the Portland based Cascadia Wild Tracking Club. Three species, wolverine, fisher, and American marten, were the primary targets of the survey. Of the three mustelid species, the marten was recorded numerous times. No wolverine or fishers were recorded. 2009 was a difficult year due to very little snow fall during the first part of the survey season. Cascadia Wild's efforts were invaluable to the success of this survey, providing valuable data and involving the public in the inventory process. Late Successional Reserves, Riparian Reserves, and designated Wilderness Areas are providing sufficient habitat and anecdotal evidence indicates the populations appear viable. Remote camera and tracking surveys have shown good populations of marten. There have been no surveys for pileated woodpeckers although there are regular sightings during field visits. There is an increasing amount of snags and downwood that is a result of decreased harvest and an increase in insect and disease activity. The former B5 pileated woodpecker and pine marten habitat areas on the Forest retained in watersheds with limited habitat appear to be functioning as good habitat for these two species, however, activity is very low. Thinning activity is occurring in some LSR plantations and overstock stands to develop late successional habitats more rapidly. This will delay snag recruitment to some degree and some snag creation has been implemented to speed the process for cavity users. #### Deer Summer and Winter Range Deer and elk habitat is typically characterized as summer or winter range depending on the season of use. Optimal cover, thermal cover and forage are important habitat components for deer and elk. In the Forest Plan, harvest activities were expected to help maintain stable populations by providing a consistent quantity of foraging areas and early seral plant communities. With a reduction in regeneration harvest, suppression of fire and dense nature of the habitats in the western cascades, less forage is being produced for deer and elk making forage a limiting factor on the Forest. Winter range areas continue to move away from early seral stages and forage opportunities continue to decline. In the interest of ecosystem health, the Forest has reduced the amount of non-native grass and forbs it plants for forage. It is inevitable that populations of deer and elk will decline unless some method of creating or maintaining openings for these species is implemented. In addition, road densities in winter range in most watersheds are above the standard suggested by the Forest Plan. Efforts are being made to remedy this where possible. A watershed restoration project is being planned that will reduce road densities. In several sub-watersheds the decommissioning will bring the road densities within plan standards of 2.0 miles/square mile of road in mapped winter range. The following are the professional assessments of the current deer and elk situation. #### Barlow Ranger District Summer range forage has been decreasing for the last five years because of reduced regeneration harvest. Winter range is stable to increasing on the eastside of the Forest with the increased use of underburning methods. Deer populations are stable to increasing. Elk populations appear stable to slightly declining. This is based entirely on anecdotal data from biologist field observations. No underburning was accomplished in 2009. #### Clackamas Ranger District Winter and summer ranges have remained constant. Populations appear to be stable. This is based entirely on anecdotal data from biologist field observations. Video technology has been used to monitor forage projects and permanent openings to determine effectiveness. A small amount of increase in forage was experienced for 2008 in the area due to many small fires caused by lightning strikes in August. A heavy rain reduced the extent of these fires but did allow some forage creation. No substantial fires occurred in 2009 due to a wet summer so no new forage was created during this year. #### **Hood River Ranger District** The trend on Hood River is toward more cover and less forage in both summer and winter range. The populations of deer and elk appear stable. This is based entirely on anecdotal data from biologist field observations. A good amount of forage is expected in the area of the Gnarl fire that occurred in 2008. This forage is in summer range for elk and deer. That combined with insect and disease areas should improve forage for ungulates on the eastside of the Forest. Deer telemetry studies conducted by Oregon Department of Fish and Wildlife on the Hood River Ranger District show a consistent migration pattern from the winter range on county lands to an area of the Mt. Hood. #### Zigzag Ranger District There is very little timber harvest on the Zigzag Ranger District as a result of management of the Bull Run Watershed Management Unit. As such, the amount of cover is increasing and forage in decreasing. In the District biologist's opinion, the populations of deer and elk are stable on this District. #### Threatened, Endangered and Sensitive (TES) Plants The Regional Forester's Sensitive Species List for plants was last revised January 2008. The list includes 114 vascular and non-vascular plant lichen and fungi species that are documented from or are suspected to occur on the Forest. There is one federally listed threatened plant *Aquatilis howellii* found in the Columbia Gorge and suspected to occur on the Hood River District. Sensitive plant inventories have been conducted for all ground disturbing activities and implemented mitigation measures have been effective in maintaining the integrity of sensitive plant sites. Threatened, Endangered and Sensitive plant standards and guidelines are being implemented. Ten non-forest Sensitive plant species have been monitored since 2000: Agoseris elata – Yellow agoseris is endemic to Washington, Oregon, and California. It is known to occur at three wet meadow sites on the Forest. A search was conducted to relocate plants at a historic site at Clackamas Meadows. For the third year in a row, none were found and it is now believed that Agoseris is likely extirpated from the site. A site at Brooks Meadow was revisited; the population appeared to be stable and has spread into wet areas in the upper meadow. A site at Bottle Prairie has been visited and is in good condition. Arabis sparsiflora var. atrorubens – Sickle-pod rockcress is known from Oregon, southeastern California, and Idaho to Utah. There are several populations on the Forest; all are east of the Cascade Crest. Monitoring was conducted at a site along Mill Creek Ridge adjacent to The Dalles Watershed/Research Natural Area and at a site on Surveyors Ridge. Invasive plants (knapweed and thistle) have been hand-pulled annually at both sites. The invasive plant control has been effective particularly along Mill Creek Ridge. Both populations appear to be stable. There are plans to visit several other known sites this year to verify presence. Bridgeoporus nobilissimus – Last fall the westside zone botanist and a private scientific contractor visited a known site on the Clackamas River Ranger District where the noble polypore is growing on an old-growth noble fir. They used increment borers to extract several cores from the base of the tree. The cores were then processed in a laboratory and tested for *B. nobilissimus* DNA. The work is part of a DNA study funded by the Regional Office to determine if *B. nobilissimus* can be detected in forest stands where the polypore conk is absent (or has not been found) by sampling wood and using DNA molecular techniques. A report on the study's results has been submitted by the contractor. Coptis trifolia – Three-leaf goldthread populations have been documented in the Virgin
Islands, Japan, Siberia, the northeastern and eastern United States, Alaska, and Oregon. On the Forest, only two sites are known, both in wet fen locations. One site has been reported adjacent to the Forest boundary on Confederated Tribes of the Warm Springs Reservation. Monitoring was conducted at one site where it was found that permitted cattle had caused some damage to plants by trampling and dislodging soil cut-banks adjacent to a stream where plants were growing. Some herbivory of *Coptis* also was observed. There is some thoughts that grazing may or may not be detrimental to this plant. Historically there was more grazing than is currently being practiced. Corydalis aquae-gelidae — Coldwater corydalis is a riparian species presently known to occur only on the Mt. Hood, Willamette, and Gifford Pinchot National Forests. Most Forest populations of coldwater corydalis are located on the Clackamas River Ranger District. Monitoring was completed in 2003 for those populations within the Oak Grove Fork and Stone Creek Hydroelectric Projects. For the Stone Creek Project, monitoring to determine project effects have produced preliminary results that show population numbers to be stable; however, there may have been a reduction in the number of adult plants producing flowers and an increase in non-flowering individuals. Plans for monitoring the Oak Grove Fork as part of Portland General Electric's stewardship are being finalized. Fritillaria camschatcensis – Black lily is known from Alaska, Washington, and Oregon. The single known population on the Forest occurs in a wet meadow on the westside of the Forest in the Bull Run watershed; the population represents the southern most extension of this species' range. Monitoring of black lily through an agreement with the Portland chapter of the Native Plant Society of Oregon has found the population to be stable at this time. In 2007, a graduate student from the University of Washington visited the site with the westside zone botanist and collected data on *Fritillaria* plants and their habitat. Her Master's thesis compares populations and habitat characteristics of *F. camschatcensis* at several sites in Oregon and Washington. Lomatium watsonii – Watson's Iomatium is endemic to Oregon and Washington. The single known population of this species on the Forest is located in an open cobbled slope on Hood River Ranger District. Knapweed plants have been hand-pulled annually to reduce competition with the Watson's Iomatium and limit the amount of weed seed produced around the habitat. Invasive plant encroachment continues to be a problem; hand-pulling invasive plants at the site is a continuing effort. There was also a threat from off-road vehicles, but the placement of boulders as barrier has been successful and the population is stable. Ophioglossum pusillum – Northern adders-tongue is circumboreal, occurring in North America from Alaska, British Columbia, and the northern United States south irregularly to Florida, California, and Mexico. Two sites are known in wet meadow habitat on the Clackamas River Ranger District. Monitoring was conducted at both sites and a complete census taken. Compared to the original habitat notes from 1989, a greater number of plants were found in 2005, indicating that the population is stable. More plants were found at one site than previously observed. An invasive plant, Canada thistle (*Circium arvense*) was found to be encroaching at both sites. Continued encroachment of thistle, an aggressive invader, could negatively affect the adder's-tongue populations in the future. The thistle at the two sites has been identified for herbicide treatment in the Forest's site-specific invasive plant treatments Environmental Impact Statement. Peltigera pacifica – Over the last few years, a number of new sites of fringed pelt lichen have been found on the Forest: (1) the summer home tracts near Zigzag-Rhododendron; and (2) two proposed timber sale areas on the Clackamas River Ranger District (No Whiskey and 2007 Plantation Thinning). Although regionally rare, *P. pacifica* may be uncommon to relatively common on the west side of the Forest. Schistostega pennata – This moss occurs mostly on upturned root wads with mineral soil in moist, usually shaded areas. The habitat is short lived, generally a few years, so there is need for occasional new wind thrown trees to maintain habitat. Populations can be expected to develop or disappear over time. The populations near Bottle Prairie and along the Barlow Road, north of the Cedar Burn Road, were monitored last summer (2008) and found good colonies at that time. Suksdorfia violacea – Suksdorf's violet is endemic to Oregon and Washington with reported historic sightings in western Idaho and Montana. Until 2006 only one known population of Suksdorf's violet was known on the Forest, on the Hood River Ranger District. In 2006, a sub-population was found a few miles away. The main population represents the southern-most extent of the species' geographical range and is one of approximately seven known sites in Oregon. The site is a popular recreational rock climbing area. Cooperative management of violet Suksdorfia with a local rock climbing association continued through 2007. Posting of signs and public education have reduced adverse impacts, and informal census shows the population at this site is currently stable and has increased in one area of the rock face where public access is restricted from climbing. In 2007, three additional signs were produced for posting in the climbing area in 2008. Sisyrinchium sarmentosum – Pale blue-eyed grass is known to occur on the Mt. Hood and Gifford Pinchot National Forests. In June to July 2005, the Forest collaborated with Berry Botanic Garden on a study to differentiate *S. sarmentosum* from *S. idahoense* based on morphological characters and DNA analysis by examining both species. The two species appear to hybridize. Two years ago, two new populations of *S. sarmentosum* were found on the Forest: one on the Barlow Ranger District and the other in a meadow in the Collawash River drainage on the Clackamas River Ranger District. Usnea longissima – Over the last few years, a number of new Methuselah's beard sites, a rare circumboreal lichen, has been found on the Forest: (1) the summer home tracts near Zigzag-Rhododendron; and (2) two proposed timber sale areas on the Clackamas River Ranger District (No Whiskey and 2007 Plantation Thinning). #### Recommendations - Continue to monitor peregrine falcon and bald eagle nesting. - Continue use of prescribed fire to enhance big game forage areas on eastside districts. - Implement additional surveys for Wolverine and Fisher to verify sighting reports. - Continue efforts to relocate the Clackamas Meadow population of Agoseris elata. If no plants are found, assess why the population is likely extirpated and determine if management options exist to bring it back, including reintroduction. Revisit the Brooks Meadow site to continue monitoring population stability. - Continue to develop management options for Arabis sparsiflora var. atrorubens habitat enhancement including the possible use of prescribed fire in selected habitat areas along Mill Creek Ridge. - Revisit historic sighting of Atragalus tyghensis at the edge of a quarry near the White River to verify identification of the species and document the status of the population if it is present. It is so far from the population on Juniper Flat and different in habitat and may be a misidentification. - Continue monitoring known sites of Bridgeoporus nobilissimus on the Forest and search for new sites. - Revisit historic sites of Castelleja thompsonii near the eastern edge of the Forest boundary to verify identification of the species and document the status of the populations if they are present. We are scheduled to collect seed from this species this summer for Berry Botanic Garden with Andrea Raven. - Revisit sites on the north and northwest slopes of Mt. Hood that were initially monitored in 1995 to document the status of the Calamagrostis breweri populations in meadow areas that are transected by recreation trails. Revisit high priority sites in the Mt. Hood Meadows Ski Area to prepare baseline monitoring as recommended in the draft Conservation Strategy. Forest botanists and Berry Botanic Garden will visit the Mt. Hood Meadows sites in the fall to collect seed, which will be stored at the Berry Botanic Garden seedbank. - Work with the grazing permittee to develop methods to avoid impacts to Coptis trifolia including the use of a rest-rotation system or other means to graze during a less sensitive time of the year to plants. Any developed mitigations should be included in the Allotment Management Plan. - A long-term monitoring plan for Corydalis aquae-gelidae is included in the new Oak Grove Fork Hydroelectric Project license. Continue monitoring potential effects of the Stone Creek Hydroelectric Project. - Revisit historic sightings of *Delphinium nuttallii* on the Hood River and Barlow Ranger Districts to verify identification of the species and document the status of the population if they are present. - Continue to work with the Native Plant Society to monitor *Fritillaria camschatcensis* (black lily). - Continue to manually remove invasive plants from the *Lomatium watsonii* (Watson's lomatium) site and monitor habitat trends. Continue protection for off-highway vehicles. Extend surveys up to similar suitable habitat areas on the summit of Bald. - Investigate the herbicide treatment of Canada thistle to help maintain habitat for the known sites of *Ophioglossum pusillum*. - Continue surveying for new sites of *Peltigera pacifica* and protect extant sites. - Outreach for new partners to participate in updating the existing Memorandum of Understanding with the Forest Service for managing the *Suksdorfia violacea*. Install new signs to mark the "no-climbing" areas on either side
of the main climbing walls. Install new environmental education signs near the trailhead. Continue to distribute environmental education pamphlets in drop-boxes along the trail and at climbing stations. - Revisit historic sighting of Potentilla villosa var. parviflora on the Forest to verify identification of the species and document the status of the population if it is present. Forest botanists and Berry Botanic Garden will attempt to relocate historical sites on the north side of Mt. Hood this summer to collect seed, which will be stored at the Berry Botanic Garden seedbank. - Revisit historic sighting of *Phlox Hendersonii* on the Forest to verify identification of the species and document the status of the population if it is present. Forest botanists and Berry Botanic Garden will attempt to relocate historical sites on the north side of Mt. Hood this summer to collect seed, which will be stored at the Berry Botanic Garden seedbank. - Continue monitoring the effects of grazing and working with the grazing permittee to protect the *Sisyrinchium sarmentosum*. Develop mitigations to be included in the Allotment Management Plan to reduce utilization of vegetation by cattle within the wet meadows that contain *Sisyrinchium* or utilize these areas during a less sensitive time of the year when impacts can be minimized. - Revisit historic sighting of *Tholurna dissimilis* on the Forest to verify identification and document the status of the population if it is present. - Continue surveying for new sites of Usnea longissima and protect extant sites. #### Wildlife Sustainability #### Wildlife Habitat Many wildlife species depend on either or both late and early seral habitats. Examples of late seral species are northern spotted owls or red tree voles. Examples of early seral species are elk, blue birds, and Townsend's solitares. The Northwest Forest Plan manages for late seral habitats across the landscape in designated Late Successional Reserves, Congressionally Withdrawn Areas, Riparian Reserves, and designated Wilderness Areas. Most wildlife biologists believe that late seral habitat is sufficiently protected to sustain late seral species. Late seral habitat is difficult to create and it takes many years to produce the size and structure that it takes to sustain late successionally dependent species. Early seral habitats are much easier to produce and also can be produced by naturally occurring disturbances, such as fire, windstorms, insect outbreaks, and by manmade events, such as timber harvests. A continuous supply of quality early seral habitat well-distributed across the landscape would be optimum to sustain good populations of early seral obligate species. With the emphasis on protecting late seral habitats, invasion by noxious weeds, normal succession, effective fire suppression, and the changes in timber harvest practices, quality early seral habitats are becoming increasingly more valuable and in demand by wildlife. To sustain these early seral obligate species, there should be increased awareness and planning to allow naturally and fire created openings to seed in naturally, placing less emphasis on controlling wildlife damage to young trees, and conducting regeneration harvests instead of thinnings. Openings created by timber harvest should be planned to provide a continuous rotation of openings adjacent to mature areas. Given the emphasis on managing the land for late seral habitat, the expected trend is a shift of the federal landscape to mature and late seral habitats. To ignore this early age structure is to ignore the majority of species using the Forest. #### Riparian Habitat Riparian habitat has the highest wildlife use of all habitats on the Forest. With the practice of managing for Riparian Reserves, this habitat is well protected and there should be very little concern for sustainability of species requiring this habitat. #### Wetlands Wetlands are very important to the species that use them. Several sensitive species use these habitats on the Forest. Oregon spotted frogs and sandhill cranes (sensitive in Washington only) utilize wet meadows. Many other species also use these wetlands for breeding, foraging, and nesting. In order to sustain populations of these species, efforts should be made to reduce disturbance in these habitats. Major disturbances to the species using these wet meadows include grazing, roads, and campgrounds located adjacent to wetlands. Every effort should be made to reduce cattle grazing in these areas. One effort was finished in 2007 to install a buck and pole fence to reduce cattle use in the Camas Prairie Meadow on the Barlow Ranger District. This area is the only known location on the Forest where spotted frogs occur. Campgrounds, such as the North Arm of Timothy Lake, Little Crater, and Bonney Meadows, should be moved to less sensitive sites. The presence of campers adjacent to the meadows reduces the wildlife opportunity and use in the wetland. These areas also should be avoided as fire staging and camp sites. Invasive plant species threaten these sites and increased vehicle and animal use in these meadows increases the opportunity for the introduction of invasive plant seed. #### **Unique Habitats** Unique habitats are a diverse group of habitats. Caves, mines, talus, and cliffs are examples of these habitats and they can be important to bats, raptors, and small mammals, such as pika. Caves and mines are the most sensitive of these habitats because roosting and maternal colonies of bats whose energy requirements are very high and can be affected by human disturbance. Most of these habitats have been protected in one form or another by road closures or bat gates. The bat gate at Townsend's Big-eared Bat hibernaculum continues to be vandalized. Efforts are being made to fortify this structure. The original number of bats found at this site was 21 in the 1990s. The recent survey found 11 bats at the site. The reason for the decline is unknown. #### **High Elevation Species** At one time high elevation species were not threatened by human intrusion. This is habitat that has been used for breeding for species such as gray-crowned rosey finch, horned larks, American pipits, American marten, and wolverine. For some species, such as wolverine, this was a last strong hold for their populations. Back-country use and high elevation recreation are intruding more and more into these habitats. This is placing an increasing pressure on these high elevation species. It has been estimated that 10,000 people per year climb Mt Hood. This is only part of the recreational use around these high elevation habitats. Some of these species will be affected by the increasing use of their habitat. This creates a concern for the sustainability of some of these species. An increased effort should be made to monitor these populations and to limit the amount of intrusion. At some point, it may be necessary to utilize a back-country permit system to control the amount of disturbance caused by hikers, skiers, and snow mobile users. Fortunately, snow mobile use is not allowed in designated Wilderness Areas so they are not as great a concern at the highest elevations. #### **Habitat Connectivity** Stable wildlife populations require intact and healthy ecosystems. Moreover, a number of wildlife species - especially the keystone top predators - need to be able to move across great distances to maintain viable populations. Some migrate seasonally, while others simply require extensive territories to hunt and disperse successfully, and still others rely on long-distance migration to maintain the genetic diversity that is critical to long-term population viability. The Northwest Forest Plan provides for connectivity of late successional species that should be adequate to sustain populations and ensure genetic viability across the Cascade Range. Human encroachment on intact ecosystems leads to habitat fragmentation, recognized as a major threat to biodiversity and a primary cause of the decline of species worldwide. In addition, global climate change will alter ecosystems and force wildlife to shift their range, underscoring the need for functional pathways where wildlife can move uninhibited across the landscape, including wildlife crossings such as underpasses, overpasses, redesigned fish ladders and culverts that allow animals to safely cross roads to access the habitat that supports them on either side. Transportation infrastructure in particular is a principal cause of habitat fragmentation, creating barriers to wildlife movement and resulting in animalvehicle collisions. Many species are sensitive to vehicle traffic and just the traffic alone would act as a barrier. Those individuals that try to cross are more than likely to be hit in the road. This concern has been addressed in Europe and in Canada with very expensive and elaborate road crossing areas for wildlife. Most of the Forest roads are not a barrier to wildlife passage. Only a few Forest roads can be considered barriers. The highway 26/35 corridor is the road system of highest concern on the Forest. If the Forest wants to sustain all of the populations then this road system will need to be addressed and wildlife crossings will need to be installed at critical points. This is currently being reviewed. decommissioning is being implemented on the Forest based on priorities identified as part of a watershed strategy. The reduction of roads has increased the usability of habitat by deer and especially elk. Studies of elk continue to show that elk tend to avoid roads in order to avoid harassment and hunting pressure. The trend to increase road closures is making habitat more useable to elk. #### People's Influences on Populations People have a substantial impact on the sustainability of wildlife populations through their presence and activities in the Forest. People like to boat, fish, hike, hunt, ski, snowboard, camp, drive, run cattle, use
off-road vehicles, harvest timber, gather wood, cut Christmas trees, or collect mushrooms, to name a few. All of these things have an influence on wildlife habitat and reproductive success. Due to the proximity of the Forest to the Portland metropolitan area, this Forest gets a higher proportion of use and thus influence on wildlife than other more rural forests. Recreation and off-highway vehicle plans should consider the influence on wildlife populations. Some seasonal restrictions may need to be incorporated in some sensitive areas. Limiting or reducing campgrounds in unique habitat areas would allow better utilization and, therefore, sustainability of wildlife that depend on them. In 2010 a planning effort will be completed that may reduce the impact of off-highway vehicles throughout the Forest and limit them to designated use areas. #### STRATEGY F Protect, maintain, and enhance the health of Mt. Hood National Forest's ecosystems, watersheds, and airsheds within the context of natural disturbance and active management. #### **Fire** #### Goal The overall goal of fire management is to support land and resource management goals and objectives. This program includes all activities for the protection of resources and other values from wildland fire. Fire and fuels programs are to be implemented consistent with Forest Plan Standards and Guidelines, Management Prescriptions, and the Pacific Northwest Forest Plan. #### **Background** #### The 2009 Fire Season A total of 57 fires were reported in 2009; 2 were lightning ignitions and 55 were human caused. Reported burned acres totaled 8.3 acres. No industrial operations fires occurred in 2009. Table 23 displays the number of fires and acres by statistical cause. Table 23: Number of fires and acres by statistical cause for the 2009 fire season. | Statistical Cause | Number of Fires | Acres | |-------------------|-----------------|-------| | Lightning | 2 | .2 | | Equipment | 1 | 1 | | Smoking | 1 | .1 | | Campfire | 36 | 4.4 | | Incendiary | 4 | .4 | | Children | 3 | 1 | | Miscellaneous | 10 | 1.2 | | Total | 57 | 8.3 | #### **Monitoring Activities and Evaluation** The Forest Plan identified fire protection and use objectives to be monitored and evaluated in determination of fire management's capability to attain other land and resource management objectives. Fire protection and use activities have direct effects to the environment, including air quality and vegetation patterns. Monitoring effects of these activities over time will help determine changes in the physical, biological, and social environment and ultimately, the program's ability to meet fire management direction for each management area. The Forest Plan monitors the numbers of human caused wildfires and the number of, size of, and intensity of wildfires. The Forest Plan standards and guidelines estimate an average annual acreage burned by wildfire to be 408 acres per year and human-caused occurrence would average 559 fires per decade and 56 per year with no more than 20% departure from the expected number per decade for both objectives. Presently, the Forest is averaging 41 human caused fires per year with an average 23 acres impacted by wildfire. The Forest average for ignitions from all causes is 63 fires and 1,586 acres. This is a considerable increase over the 408 acres per year expected in the Forest Plan. The large acreage fires have been the result of lightning ignitions in wilderness and remote poorly accessed areas of the Forest. Table 24 displays the number of fires and acres for the five year period for all causes. Table 24: Number of fire and acres for five years. All Causes. | Year | Number of Fires | Acres | |---------|-----------------|--------| | 2005 | 40 | 17.6 | | 2006 | 90 | 2795 | | 2007 | 44 | 1250 | | 2008 | 85 | 3858 | | 2009 | 57 | 8.3 | | Total | 316 | 7928.9 | | Average | 63.2 | 1586 | As part of the total fire and fuels management program, the Forest also monitors desired fuel residue profiles with an objective to treat an average of 800 acres annually. All units reported that they had met the profiles with less than a 10% deviation from what was stated in the environment analysis or other Forest standard. For the current reporting period, 2819 acres of natural hazardous fuels were treated exceeding the 800 acre annual estimate by the Forest Plan. Since integration of the Forest's fuels and vegetation management programs, the Forest has easily been able to exceed the 800 acres estimation. #### Recommendations - Reduce hazard exposure to firefighters and the public during fire suppression activities. - Prioritize hazardous fuels reduction where the negative impacts of wildland fire are greatest. - Ensure communities most at risk in the wildland-urban interface and municipal watersheds receive priority of hazardous fuels treatment. - Continue to focus attention on condition class 2 and 3 in the short interval fire regimes. #### **Noxious Weeds** Noxious weeds or invasive plants are monitored because they displace native vegetation, alter species composition of vegetation, reduce the productivity of desired commodities, reduce species diversity, and adversely affect recreational quality. Monitoring is conducted on weed control treatments, known infestations, and new infestations. Monitoring weed control treatments gives us information to determine the effectiveness of treatments and how best to allocate financial and personnel resources. Monitoring weed infestations provides us with important information on their impact (e.g., location, acres infested, and rate of spread) and makes it possible to prioritize treatment sites. For example, treating a newly discovered, small infestation of aggressive non-native hawkweed now will prevent a large costly effort in the future. #### Goal The Forest Plan goal is to control noxious weed infestations and prevent their spread through a combination of efforts including prevention, education, inventory, treatment, and monitoring. #### **Background** The Record of Decision (ROD) and Final Environmental Impact Statement (FEIS) for Site-Specific Invasive Plant Treatments for Mt. Hood National Forest and Columbia River Gorge National Scenic Area in Oregon (March 2008); the Final Environmental Impact Statement (FEIS) and Record of Decision (ROD) for Preventing and Managing Invasive Plants in the Pacific Northwest Region (Oct. 2005), Executive Order 13112 (1999), and the Mt. Hood National Forest Land and Resource Management Plan (1990) provides direction for the noxious weed program. The Forest cooperates with the Oregon Department of Agriculture, Wasco County and Hood River County Weed Departments, and Bonneville Power Administration to conduct inventories and treat noxious weeds. The Forest also participates and coordinates with the recently formed Garlic Mustard working group, the Columbia Gorge Cooperative Weed Management Area (CGCWMA), the Four County CWMA, and the Wasco County weed board. These groups are made up of many different cities, counties, state agencies, landowners, and interested citizens to coordinate our weed education and control efforts across multiple ownerships. Noxious weed control efforts are accomplished using the early detection and rapid response strategy which includes biological control, inventory and survey, assisting the public and cooperators through technology transfer and noxious weed education, maintaining noxious weed data and maps for priority listed noxious weeds, and working with cooperators on integrated weed management projects. The primary goal is accomplished through a combination of efforts including prevention, education, inventory, treatment, and monitoring. **Prevention** moved forward with implementation of 36 CFR 261.50 (a) requiring the use of weed free forage on all Forest Service lands in the Region 6. Notification signs were purchased for installation along Forest roads and highways in 2010. Smaller signs were placed at key recreation sites and trailheads. Local vendor's continued marketing and selling weed free forage. **Education** is a critical element of invasive species management. A statewide effort, known as Weed Awareness Week (proclaimed by the Governor for the State of Oregon) provided an opportunity to distribute educational posters in local communities near the Forest. Six information kiosks constructed by Hood River County (using Title II Payments to Counties funds) were placed at strategic locations to display information about how to recognize invasive species, where to report sitings, and how to prevent spread. Invasive plant displays were featured at local county fairs and Ranger District open house events. Sandy Basin Weed Watchers Early Detection Rapid Response training was held in Forest Headquarters Office in June and was well attended. **Treatments** were applied to control diffuse knapweed (*Centaurea diffusa*), hound's tongue (*Cynoglossum officinale*), common toadflax (*Linaria vulgare*), Japanese Knotweed (*Polygonum cuspidatum*) and tansy ragwort (*Senecio jacobaea*) east of the crest of the Cascade Range. This was accomplished under Agreements with Wasco and Hood River Counties. Forty-two sites were treated with herbicides (375 acres), including roadsides, rock quarries, administrative and other disturbed sites. West of the Cascade Crest, diffuse and spotted knapweeds, Japanese knotweed, Himalayan blackberry, and non-native hawkweeds (*Hieracium aurantiacum* and *H. pratense*) were treated. This was accomplished under Agreements with Oregon Dept. of Agriculture (ODA), Oregon Dept. of Transportation (ODOT), and The Nature Conservancy (TNC). Fifteen sites were treated with herbicides (98 acres), including road and power line rights-of-way and administrative sites. Handpulling was done on four sites. A small (1/4 acre) site of false brome (*Brachypodium sylvaticum*) was hand-pulled for the second year. Solarization treatment was continued on a reed canarygrass
(*Phalaris arundinacea*) site. **Monitoring** via an ongoing challenge cost-share agreement between The Nature Conservancy (TNC), Mt. Hood National Forest and the Columbia Gorge National Scenic Area is entering its fourth year in 2009. Japanese knotweed (*Polygonum cuspidatum*) was monitored on several sites that were treated by TNC in 2008. Re-treatment was done as appropriate. TNC monitors and treats adjacent private lands in the Sandy River basin. Site restoration, inventory, and post treatment monitoring are also done under this Agreement. A detailed report titled "Sandy River Riparian Habitat Protection Project Report 2008" describes TNC's basin wide efforts which have been ongoing for over eight years. More information is available at http://tncinvasives.ucdavis.edu/. Table 25: Acres of Noxious Weed Treatment in FY07 through FY09. | Acres Treated by Method | | | | | |-------------------------|------|------|------|--| | | 2007 | 2008 | 2009 | | | Chemical | 298 | 366 | 473 | | | Manual & Mechanical | 5 | 102 | 85 | | | Biological | 0 | 0 | 0 | | | Total | 303 | 468 | 558 | | #### Monitoring Activities and Evaluation The Forest currently monitors only targeted weeds (priority weeds identified in by ODA for prevention and control). Lack of funding prevents a forest-wide systematic survey. #### Are known untreated weed sites continuing to spread? A thorough, systematic inventory of noxious weeds across the Forest has not been completed to answer this question quantitatively. However, the R6 Final Environmental Impact Statement (FEIS) for Preventing and Managing Invasive Plants in the Pacific Northwest Region (Oct. 2005), estimates that invasive plants are currently spreading at a rate of 8 -12% annually. ODA and personnel from the Confederated Tribe of Warm Springs have noted increasing populations of diffuse knapweed (*Centaurea diffusa*) along Highway 26 and Highway 35 corridors in the Forest. Observations indicate non-native Yellow and Orange Hawkweed (*Hieiracium auriantiacum* and *Hieracium floribundum*) is spreading. Satellite populations have been detected up to ten miles from the one main population on Zigzag Ranger District. Untreated or sporadically treated spotted and diffuse knapweed in the Lake Branch area (1310 road system) of Hood River Ranger District continue to flourish. #### Are new infestations occurring? Yes. A previously unknown population of false brome (*Brachypodium sylvaticum*) was detected in 2006 in the Collowash drainage on Clackamas River Ranger District. The estimated infestation size is ¼ of an acre. The site was hand-pulled in 2007 and will be monitored. A relatively new invader, Garlic Mustard (*Alliaria petiolata*), which has established itself in parts of the Columbia River Gorge and some Portland parks, has the potential to spread on to the Forest and is being closely watched. Are biological control agents controlling the spread of noxious weeds? Some widespread weed species that have established biological control agents, such as Scot's (or Scotch) broom (*Cytisus scoparius*), tansy ragwort at lower elevations, and St. John's-wort (*Hypericum perforatum*), are likely being controlled to some degree. Biological controls for the knapweeds, however, have had modest impact thus far. No biological controls have been approved for houndstongue, hawkweed, knotweed, or toadflax. Biological controls do not eradicate weeds but decrease plant vigor and generally reduce population densities. The biological controls for the above weeds are all insects that do not significantly affect native plants and are approved for release through a federal agency known as the Animal and Plant Health Inspection Services (APHIS). Are mitigation measures to reduce the risk of noxious weed establishment being implemented for all ground-disturbing activities? The R6 Final Environmental Impact Statement (FEIS) for Preventing and Managing Invasive Plants in the Pacific Northwest Region (Oct. 2005), specifies Goals and Objectives, as well as Standards which were adopted into every Forest Land and Resource Management Plans in the Pacific Northwest Region (R6). This direction is expected to result in decreased rates of spread of invasive plants. Ground-disturbing activities requiring NEPA analysis include a noxious weed risk analysis prepared by the botanist or noxious weed coordinator. The risk analysis discloses known infestations near the project area, the likelihood of spread due to project activities, and recommended mitigation measures. Botanists and weed coordinators have also been certifying rock sources as "free of noxious weeds" before they are hauled to the Forest for use in road maintenance or restoration work. Mitigation measures are also in place for activities not considered ground-disturbing such as backcountry horse use where weed-free hay and straw are required. • Do herbicide treatments for noxious weeds follow direction set in the R6 Final Environmental Impact Statement (FEIS) and Record of Decision (ROD) for Preventing and Managing Invasive Plants in the Pacific Northwest Region (Oct. 2005) and the Record of Decision (ROD) and Final Environmental Impact Statement (FEIS) for Site-Specific Invasive Plant Treatments for Mt. Hood National Forest and Columbia River Gorge National Scenic Area in Oregon (March 2008)? Yes. All herbicide applications are done by certified applicators. All Project design criteria are followed. A treatment form is completed by the applicator for every site. Each site is monitored by a Forest Service official. Required information is transferred from these forms to FACTS database for upward reporting. Chemical control methods have been effective in reducing the number of noxious weeds. However, plants germinating from seed already deposited in the soil will necessitate treatment in future years until the seed bank is depleted. Eradication may not be possible on large, well established populations. Treatment has been effective in controlling satellite populations and preventing the establishment of large, costly infestations. Rock sources and storage sites on Barlow Ranger District were targeted as high priority for chemical treatment to reduce the risk of moving contaminated material to other locations resulting in establishment of a new infestation. Knotweed sites associated with summer homes on Zigzag Ranger District and Parkdale Work Center were chemically treated for the second time with implementation of the Invasive species Environmental Impact Statement (EIS) for Mt. Hood NF and Columbia Gorge National Scenic Area (2008), which authorized a broader spectrum of methods for noxious weed control and conducted site specific analysis. The population of knapweeds on treated roadsides has been greatly reduced. Grasses have re-established and help to minimize re-infestation of knapweed. #### **Recommendations** - Hwy. 35 should be a high priority for Roadside weed treatment in 2010. - Implement a systematic weed-free rock source inventory and database accessible to all Forest employees (similar to Olympic NF). - Continue participating with cooperative weed management areas (CWMA's) and species specific working groups. - Encourage Bonneville Power Administration to fund treatment of the primary hawkweed infestation within the Big Eddy-Ostrander power transmission corridor. - Special Use permittees who construct and maintain power lines, fiber optic lines, gas lines, or any other ground disturbing activity MUST take responsibility for controlling invasive species. Pertinent clauses must be incorporated into their permits. - Survey for new infestations of Garlic Mustard and satellite populations of Knotweed. Treat with "Early detection rapid response" strategy. - Continue Agreements with Wasco and Hood River Counties, TNC, Clackamas River Basin, ODOT, and ODA to treat weeds, conduct inventories, monitor, and educate the public. Identify additional sources of funding. - All projects that result in ground disturbance must have mitigations in place to reduce the risk of noxious weed infestation and spread. These mitigations should be reviewed following implementation of the project to determine effectiveness. - Continue to work with Oregon Department of Agriculture to establish biological controls on the Forest. - Monitor Forest activities to ensure that standards outlined by the Regional Forester in the Record of Decision for invasive plant management are being fully implemented. - Obtain funding and/or partner with interested groups to conduct a systematic invasive species inventory across the National Forest. All data must be entered into NRIS-TESP/INVAS. #### Geology #### Goal The monitoring goal is to insure that the Forest Plan standards and guidelines for geology are adequate to prevent the activation, reactivation, or acceleration of movement of unstable hillslopes as a result of forest management activities. #### **Background** The primary geologic hazard on the Mt. Hood National Forest is landslides. The types of landslides common on this forest are: earthflows, slumps, debris flows, debris slides, and rockfall. These landslide types can be natural or human-induced. Landslides have some beneficial effects, such as delivering large woody debris to streams, but can also deliver unwanted fine sediment to streams. Many areas of the forest are susceptible to landslides. The areas most at risk for landslides are portions of the Clackamas River watershed, where dormant-to-active earthflow complexes cover many square miles, and the area around Mt. Hood, where all the major drainages are subject to periodic massive debris flows. #### Monitoring Questions, Activities, and Evaluations - Are guidelines for allowable management activities on earthflows being implemented? - Are guidelines for allowable management activities on other types of landslides being implemented? - Are the earthflow risk areas accurately mapped? ####
Results of Monitoring During 2009, for the first year since monitoring began in 1991, there were no timber harvest units on B8 (earthflow) land. No roads were constructed on B8 (earthflow) land. There were no timber harvest units on mapped landslides other than B8 land in 2009. No roads were constructed on mapped landslides other than earthflows. The earthflow risk areas are being modified during project-level work as more detailed evaluations of slope stability occur. No acceleration or initiation of earthflow movement has been measured or suspected as a result of timber harvest or road building activities on B8 land since monitoring began in 1991. #### Recommendations The present standards and guidelines for management activities on B8 land and other landslide-prone areas provide a good starting point for evaluating impacts. The guidelines are often modified based on the judgment of slope stability specialists. Continued measurements during 2010 at established earthflow monitoring stations will provide valuable information to guide future management activities on earthflows. These measurements are primarily for existing slope movement rates. Measurements have been made annually since 1993 and are showing movement rates ranging from zero to several feet per year. Much additional effort is still needed in verifying the scientific validity of the standards and guidelines for earthflows, particularly those covering hydrologic recovery. Additional efforts in 2010 should be focused on continuing the review of the risk classification system for earthflows, and continuing the field verification of the earthflow and landslide boundaries. #### **Air Quality** #### Goal The overall goal is to support State and national goals to improve air quality on the Forest and within the region. #### Background Under provisions of the federal Clean Air Act, the Wilderness Act, the Organic Act, and the Regional Haze Rule, the Forest Service has responsibilities and authorities to mitigate potential air quality impacts on all national forest system lands. Monitoring activities include monitoring prescribed fire emissions and criteria pollutants, including their deposition and effects on visibility, precipitation chemistry, and forest ecosystems. Fire management activities must meet State Implementation Plan (SIP) requirements for particulate emissions and visibility as well as Forest Plan Standards and Guidelines. In addition, public health and environmental quality considerations will be incorporated into fire management activities. The Clean Air Act established National Ambient Air Quality Standards for criteria pollutants (i.e., sulfur dioxide, nitrogen dioxide, ozone, carbon monoxide, lead, and particulate matter < 10 um and < 2.5 um). Criteria pollutants are monitored for the purpose of helping forest managers ensure permits for new sources will not cause significant deterioration of air quality in Class I areas, such as the Mt. Hood Wilderness. The New Source Review provision of the Clean Air Act provides the process and assigns responsibilities to federal land managers for this determination. The Forest Service Air Resource Management Program, in collaboration with the National Park Service and other agencies, maintains two instrumented networks: the National Atmospheric Deposition Program (NADP) (which monitors acidity and chemistry of precipitation) and the Interagency Monitoring for Protected Visual Environments Program (IMPROVE) (which monitors visibility impairments in Class I airsheds, such as national parks, wildernesses and wildlife refuges). In 2003, the NADP monitor was removed from its location on the Mt Hood National Forest to Mt Zion near Stevenson, WA and its data is accessible from http://nadp.sws.uiuc.edu. IMPROVE data can be accessed at http://vista.cira.colostate.edu/improve. Biomonitoring remains the primary method by which the Forest monitors air quality. A network of approximately 2,500 forested sites in Oregon and Washington, primarily on the 5.4 km FIA grid of permanently marked inventory plots, for detecting and quantifying ecological effects from air pollution and climate change. About 1,500 sites are in western Oregon and Washington. There are 152 biomonitoring sites on Mt. Hood National Forest including 11 sites in Mt. Hood Wilderness, a Class I area. Lichens, sensitive to nitrogen- and sulfur- containing pollutants, are the primary indicator in the biomonitoring network allowing early detection of adverse effects. Monitoring data is accessible at the Northwest Region Air Resource Management website http://gis.nacse.org/lichenair. #### **Monitoring Activities and Evaluation** #### Prescribed Fire Emissions The overall goal is to manage prescribed fire emissions to meet the requirements of the State Implementation Plan (SIP) for the Clean Air Act. In addition, public health and environmental quality considerations will be incorporated into fire management activities undertaken for the hazardous fuels management program from the planning process forward. The management activities that affect air quality by the Mt. Hood National Forest remained in compliance throughout the monitoring period. No deviations from the State's Smoke Management Plan occurred and compliance with all Forest Service and State Air Quality Guidelines were maintained. A total 631 acres were treated during the course of the period. No intrusion into smoke sensitive areas occurred as a result of Forest management activities. Visibility in the Mt. Hood Wilderness Class I area was not impaired as a result of management activities. All burning operations were properly recorded and submitted to Salem Smoke Management for approval and record purposes using the FASTRACS system. The Forest Service continues to reduce emissions from burning activities. The goal of the Forest Plan is to reduce emissions 63% by the end of the first decade of the Plan, and that is being achieved to date. #### Air Pollutants Air pollutants of most ecological concern to the Forest are nitrogen oxides (NO_x), sulfur dioxide (SO_2), ammonia (NH_3), toxic metals, and ozone. Emissions of nitrogen oxides from fossil fuel combustion and ammonia from agriculture are the primary source of eutrophying air pollutants causing adverse effects to water quality, fish, aquatic communities, altered soil chemistry and reduced tree growth rates. Because forest ecosystems of the Cascades are generally adapted to low nutrient inputs, too much nitrogen can cause shifts in species composition favoring those with higher N requirements—usually weedy species—over endemic and ecologically important species. #### **Monitoring Results** - 1. Precipitation chemistry. During 21 years of precipitation chemistry monitoring at Bull Run (Fig. 4), no significant change was observed in pH, or levels of nitrates and ammonia in precipitation. Sulfates decreased at Bull Run, consistent with regional decreases attributed to point source controls required by the Clean Air Act. Unpolluted rain is typically between pH 5.1 and 5.6; mean pH at Bull Run was 5.22, a little low compared to other regional NADP monitors. Levels of ammonia in precipitation (mg/L) were high; a recently published critical level of 0.04 mg/L—protective of sensitive epiphytes—was exceeded most years. Total nitrogen deposition (kg/ha/yr) was also higher than expected for western Oregon and Washington, but not quite exceeding critical loads. The Portland/Vancouver Metropolitan area can be considered the primary source of the pollutants. - 2. Visibility monitoring (Fig. 5). Since monitoring began in 2000, visibility at the Mt Hood Wilderness IMPROVE site has neither worsened nor improved. Overall visibility (deciviews) and particulates from forest fires are largely comparable to other clean sites in the Oregon Cascades. Decreases in sulfates observed at the NADP monitor through 2003 do not appear to have continued to 2008, but appear to have leveled and are only slightly higher than other clean sites. Mean ammonium nitrate levels in fine particulates were conspicuously high, about two-fold higher at the Mt. Hood IMPROVE site than the Three Sisters IMPROVE site, consistent with elevated nutrient nitrogen in precipitation chemistry, and elevated nitrogen concentrations in epiphytic lichens and mosses (see AQRV monitoring, next). #### 3. AQRV Monitoring. - a. Ozone effects on sensitive species. No evidence of ozone damage to ozonesensitive vascular plant species was detected at any of the sites on the Forest monitored by FIA-FHM program from 1997-2002. Indicator species in Oregon were Ponderosa pine, thimbleberry, quaking aspen, Scouler's willow, mountain snowberry, huckleberry, Pacific ninebark, blue elderberry, and chokecherry. - b. Nitrogen and Sulfur effects on sensitive species (Fig. 6). Monitoring of the ecological effects of acidifying and eutrophying (fertilizing) air pollutants on sensitive non-vascular plants occurred from 1994-1997 and 2004-2005. Lichen community survey data from10-year revisits to 52 lichen biomonitoring sites on the Forest indicated that air quality improved at about 30% of sites and did not change at 50% of sites. Slightly worse scores (favoring species of more eutrophic conditions) were observed at about 20% of sites but in no obvious pattern. Because most sites improved or did not change, no general concern is warranted. - c. Spatial and temporal trends nitrogen, sulfur, and metals accumulated by vegetation (Fig. 7). #### Nitrogen Slight increases in atmospherically deposited nitrogen were observed in lichen thalli at most sites (consistent with regional trends) but the new levels were still within expected 'clean-site' ranges for lichen vegetation at all sites except those on the Forest boundary closest to Portland and the Columbia River, and the eastern
most sections of the Forest. #### Sulfur Sulfur deposition also increased at about half the sites, and about 25% of sites are now close to or above 'clean site ranges'. Sulfur is associated with marine aerosols and these increases, which contrast with decreases observed in much of the region, might be explained by higher storm intensity. Highest sulfur concentrations were observed at mid to high elevations in the Cascades and at Forest boundary closest to Portland and the Columbia River. These findings contrast with regional declines recorded NADP monitors (all at low elevations) and warrant further analysis. #### Toxic Metals Decreases were observed in chromium, nickel, lead and titanium levels in lichen vegetation, possibly a long-term environmental benefit of improved vehicle emission controls and removal of lead from gasoline. Cadmium, zinc, and vanadium increased at most sites. Cadmium is associated with marine aerosols and may be related to climate change driven increases in storm intensity. No explanation is available yet for increased vanadium or zinc. Vanadium increases appear to be especially localized along the southeastern sections of the Forest, suggesting the possibility of a new source east of the Cascades. Climate warming in the Cascades may explain migration of some metals to higher elevations. #### Implications for Management Of all the national forests in Oregon, the Mt Hood National Forest is most vulnerable to air pollution because of its proximity to the Portland/Vancouver metropolitan area to the west, and, to the east, the intensively agricultural counties of Hood River, Wasco and the Columbia Basin. It is a tribute to state and federal environmental policies that, despite a marked increase in state population since 1982, air quality on the Forest has generally stayed the same, improved, or is still within clean site ranges for most monitored pollutants. The condition, species diversity and abundance of the most air-pollution sensitive vegetation, so far indicates an overall steady state or slight improvement in air quality. Visibility in the Mt. Hood Wilderness is comparable to other Class I Wildernesses in Oregon, as are fine particulates from forest fires. However, a few areas are worrisome. Concentrations of ammonia (mg/L) in precipitation consistently exceeded critical levels for sensitive epiphytes in the Bull Run watershed from 1982 through 20003, when monitoring ceased. Total nitrogen deposition (kg/ha/yr) was two-three times background level during the same period. Sensitive, nitrogen fixing lichens and some epiphytic mosses are sparse in this area and the Mark Hatfield Wilderness in general. Although lichen-community based air quality scores were still below published response thresholds in the Wilderness, it may be that slightly acidic deposition is preventing a shift toward eutrophic species which are typically present at sites with poor air scores. Decreases in sulfates documented during the 1980s and 1990s by the NADP monitor at Bull Run appear to have leveled off—as indicated by no change in ammonium sulfate in fine particulates measured by the Mt Hood IMPROVE site since 2000, and no change in sulfates in precipitation at the Columbia River Gorge NADP monitor near Stevenson, WA. Small increases in sulfur accumulated in epiphytic vegetation were actually documented across many sites in the Forest, and about 20% of sites exceeded expected background ranges for this element. Continued increases in sulfates could adversely affect species distribution and abundance of sensitive vegetation. Cadmium, vanadium, and zinc levels in vegetation, are still low, but appear to be increasing. The concentration of sites with increased vanadium and sulfur concentrations in the eastern sections of the Forest indicates new sources or increased emissions from existing sources east of the Cascade crest. Although no trends data are available yet, mercury contamination of forested ecosystems is increasing nationally and also warrants monitoring. Increases in some contaminants may be due to increased Pacific storm intensity which could be bringing larger amounts of marine aerosols deeper into the Forest via the Columbia River; increases in trans-Pacific transport are also possible, as is the possibility that warmer climates in the Cascades are causing some metals to be transported to higher elevations. But, in general, local and regional emission sources can be expected to explain most contaminants. Continued monitoring and further analysis of existing data is recommended, especially with regard to the status of epiphytic lichens and mosses in the Mark Hatfield Wilderness. The addition of air quality objectives to the next revision of the Forest Plan is recommended. #### STRATEGY G Enhance carbon storage in Mt. Hood National Forest and forest products. Climate change cuts across every major resource area in forest management – fire, fuels, invasive species, water resources, forest health, endangered species, recreation, and more. One of the biggest opportunities available to the Forest Service in meeting Strategy G is to increase carbon sequestration in forests, help forests adapt to climate change, and provide options for reducing carbon emissions through the use of forest products, biofuels, and sustainable operations. The 2008 Forest Service Strategic Framework for Responding to Climate Change and the 2010 Roadmap for Responding to Climate Change identifies actions to incorporate adaptation, mitigation, sustainable consumption, and education objectives in our existing programs and policies and to build strong partnerships with other agencies, tribes, States, communities, and citizens to ensure that national forests and private lands are conserved, restored and made more resilient to climate change. Many of the individual resource reports address more than one of the seven strategies and so are not repeated here. Here is a summary of which reports and how the resource program contributes to carbon storage: #### Volunteers, Partnerships, & Collaborative Efforts Our existing relationships and collaborative efforts with other agencies, organizations, partners, and private landowners provides a means to collectively work on restoration, and helping private landowners deal with effects of climate change by keeping lands forested, healthy, and prepared for the future. #### **Timber and Silvicultural Practices** Managing forest resources strongly addresses carbon storage by helping forests to adapt by improving resiliency, and maximizing landscape and biological diversity. - Healthy forests store carbon. Stand improvement activities, such as thinning, increase growth and promote healthy stand conditions across forest, range, and aquatic ecosystems. Managing forest vegetation is an opportunity for restoring the functions and processes that forests evolved with on a watershed scale. The Forest Plan also directs activities to maintain genetic diversity of forest stands to maintain forest health through genetic resiliency. - Wood products store carbon. Wood products substitute for manufactured products offsetting fossil fuel emissions. Forests can provide renewable biofuels that replace fossil fuels and heat homes, generate electricity, and power cars. - On the Mt. Hood National Forest and generally the west Cascades, a relatively small proportion (<1%) of the land is being harvested and the area as a whole is accumulating carbon. - Rapid reforestation after catastrophic events also helps move an area from a carbon source to a carbon sink. #### Soils Conservation of soil productivity and large deadwood material helps to store carbon and is important in maintaining resilience of forest ecosystems. Forest Plan standards address the conservation of these resources. #### Fire Catastrophic fires release carbon that has been stored in trees into the atmosphere. Climate changes in temperature and in the timing, form, and amount of precipitation deeply affect hydrological functions, as well as drought and fire regimes. A Forest Service strategy is avoidance of wildfire emissions. In altered disturbance regimes, the Forest Service and the Forest are treating fuels designed to restore healthy ecosystems, to reduce fire risk and severity, and provide small diameter material for biomass co-generation plants. In addition, through collaboration with State, local landowners, Tribal, and local entities, the Forest is working to reduce risk of wildland fires to communities with fuel treatments on both side of the National forest boundaries and development of community fire plans. #### APPENDIX B: Mt. Hood Draft Criteria and Indicators Criteria and indicators is an approach that provides a way to integrate social, ecological, and economic concerns with people and places from the very beginning of the planning process. They provide a common language to identify the conditions and processes necessary to sustain the social, ecological, and economic systems that sustain us. By focusing on the linkages between these systems we can increase our understanding of sustainability and make better decisions for the future. The following draft criteria and indicators, developed during the LUCID test, provide a first approximation relevant to describing sustainability for the Mt Hood National Forest and will be further refined and adapted through a collaborative process as the Forest moves into plan revision. The Oregon Board of Forestry has articulated strategies for the forestry program for Oregon that fit under the Montreal Process Criteria, as displayed in Table 3. The LUCID criteria were independently developed, but also have a correspondence to the Montreal Process Criteria, as shown in Table 3. | Principal 1 - Social Well- Being | Principal 2 – Ecological
Integrity | Principal 3 – Economic
Well-Being |
---|--|--| | Collaborative Stewardship Citizen Involvement Local area empowerment Collaborative decision making Civic science Community Resilience Social capital – Built relationships Civic competence at the community level Civic enterprise Institutional Adequacy Rules of the game Tenure Legal framework Authority structure Social and Cultural Values Sense of place Aesthetic values Recreational values Access Civil rights Environmental justice Worker safety Cultural heritage Community Livability Community health Settlement pattern | Landscape Function Disturbance processes Hydrologic function Hillslope Processes Long-term Plant Community Dynamics Landscape Structure/Composition Vegetative composition Human developed landscape features Landscape patterns Ecosystem Function Nutrient cycling Water quality Air quality Air quality Ecosystem Structure Ecological legacies Special habitats Riparian systems Population Function Alien species Community structure and diversity Population Structure Species of concern Genetic Function/Structure Artificial selection Migration Drift | Sustain Minimum Capital Stock Natural capital Human capital Built capital Deliver Market or Market- related Goods and Services Commercial forests products Energy flows Recreation use values Supply Other Goods and Services Water flows and quality Seek Benefit and Cost Distributional Equity Marketed forest goods and services Non-marketed goods and services Workforce distribution Local revenue sharing Maintain trade balance Exports of goods and services Imports of goods and services Ability for local community to meet employment requirements | # APPENDIX C: Mt. Hood National Forest Goals, Vision Statements, and Value Statements ## Oregon Board of Forestry Strategies and Mt. Hood National Forest Goals **<u>Strategy A:</u>** Promote a sound legal system, effective and adequately funded government, leading-edge research, and sound economic policies. - Honor treaty rights and privileges of Native Americans. Protect and preserve Native American ceded rights and privileges to access and use the Forest for traditional religious values (Goal 2). - Manage land ownership within the Forest considering other resource goals and management efficiency (Goal 34). - Provide a drug free work environment (Executive Order 12584, Sept. 15, 1986) (Goal 37). **Strategy B:** Ensure that the Mt. Hood National Forest provides diverse social and economic outputs and benefits valued by the public in a fair, balanced, and efficient manner. - Provide all persons equal opportunity to use the Forest regardless of race, color, creed, sex, marital status, age, handicap, religion, or national origin (Goal 1). - Consider the needs of physically challenged individuals in the design and maintenance of Forest facilities (Goal 3). - Manage the Forest to break down social and institutional barriers to legitimate use of the Forest by non-traditional groups (Goal 4). - Assess and document all cultural resources. Protect, maintain and/or enhance prehistoric and historic sites, buildings, objects and antiquities of local, regional or national significance (Goal 5). - Provide a broad range of yearround, high quality developed recreation opportunities (Goal 32). - Manage Forest roads to consider deer and elk as a resource for recreational hunting, i.e. consider habitat access, movement patterns and dispersal of recreational hunters (Goal 14). - Manage Forest recreational access to protect natural resources, provide for public safety, and minimize conflicts among the various users of the Forest (Goal 16). - Provide safe, efficient access for the movement of people and materials involved in the use and management of the Forest. Provide for construction and maintenance of roads, at a level that will minimize environmental damage (Goal 17). - Provide a broad range of year-round, high quality dispersed recreation opportunities in an undeveloped forest environment (Goal 26). - Maintain a Forest trail system designed, located, managed and maintained to consider users needs and other resource values (Goal 27). - Provide a Forest trail system for year-round use, including winter trails in snow zones consistent with other resource values (Goal 28). - Provide a Forestwide bicycle trail system integrated with other transportation systems and coordinated with other agencies (Goal 29). - Integrate fishing and hunting as recreational activities on the Forest (Goal 31). #### Strategy B (continued) - Provide Forest visitors with visually appealing scenery. Manage all Forest lands to attain the highest possible visual quality commensurate with other resource values (Goal 33). - Provide efficient management of administrative sites and facilities (Goal 35). - Facilitate the exploration and development of energy and mineral resources on the Forest while maintaining compatibility with other resource values (Goal 18). - Provide law enforcement and search and rescue services that are responsive to public need. Provide support to other agencies and local officials (Goal 23). - Provide for use and occupancy of the Forest by public and private interests when compatible with other resource objectives (Goal 36). - Use the National Recreation Strategy to bring the American people into direct contact with their national forests by providing opportunities for agency/private partnership to be developed (Goal 39). - Develop interpretive services programs for the Mt. Hood National Forest that will meet the needs of: Portland metropolitan people, rural population adjacent to the Forest and national and international visitors (Goal 40). - Manage the Forest to provide for the many significant values of old growth Forest for present and future generations recognizing that the amounts of old growth to be protected may range from large ecologically significant stands to small designated areas for public visitation and appreciation (Goal 41). - Protect and enhance the river and river related values for designated and candidate (eligible) Wild and Scenic Rivers (Goal 42). <u>Strategy C:</u> Maintain and enhance the productive capacity of Mt. Hood National Forest to improve the economic well-being of Mt. Hood's communities. - Produce wood fiber at sustainable levels consistent with other resource values and economic efficiency (Goal 19). - Reforest harvested areas with adequate stocking (Goal 20). - Manage a genetic tree improvement program to enhance the growth and quality of crop trees (Goal 21). - Manage vegetation and provide quality forage conditions for commercial domestic livestock. Prevent unacceptable damage to other resource values from commercial livestock grazing (Goal 33). - Integrate the activities of implementing the Mt. Hood National Forest Plan with activities of local dependent communities to: 1) improve employment opportunities, 2) improve incomes and wellbeing of the nation's rural people, and 3) strengthen the capacity of rural America to compete in the global economy (Goal 38). - On acres allocated to timber production, increase net annual increment of usable wood fiber produced per acre of commercial forest land. Increase wood quality. Shorten time for stands to reach culmination of mean annual increment (Goal 44). - Produce genetically improved seed for reforestation of selected tree species (Goal 45). ### <u>Strategy D:</u> Protect, maintain, and enhance the soil and water resources of Mt. Hood National Forest - Protect, maintain or enhance the character and quality of water. Provide long term sustained production of water. Provide a favorable condition of water flow from the Forest for both on-Forest and off-Forest users (Goal 7). - Protect, maintain and/or restore soil productivity throughout the Forest; stabilize and/or restore damaged or disturbed soil areas (Goal 9). - Provide management and maintenance of active landslides and large, slow moving earthflow areas (Goal 10). ### <u>Strategy E:</u> Contribute to the conservation of diverse native plant and animal populations and their habitats in Mt. Hood National Forest. - Protect, maintain or enhance the characteristics of floodplain, wetland and riparian plant communities. Maintain or increase aquatic and terrestrial habitat complexity and diversity within the riparian zone. Assure long term provision for riparian associated wildlife and plant species within the full spectrum of
riparian zones across the Forest (Goal 6). - Maintain or increase fish habitat capability and assure long term sustained production of fish (Goal 8). - Maintain viable populations of native and desirable nonnative wildlife and plant species in perpetuity (Goal 11). - Protect, maintain or enhance habitat quality for wildlife. Maintain or enhance plant and animal habitat diversity (Goal 12). - Provide summer and winter habitat conditions sufficient to support deer and elk populations at levels consistent with Oregon Department of Fish and Wildlife's herd management objectives (Goal 13). - Protect or enhance habitat for threatened, endangered and sensitive plants and animals. Assist with population recovery of all listed threatened, endangered and sensitive. Re-established peregrine falcon and bald eagle as nesting species on the Forest (Goal 15). # <u>Strategy F:</u> Protect, maintain, and enhance the health of Mt. Hood National Forest's ecosystems, watersheds, and airsheds within the context of natural disturbance and active management. - Provide fire protection, fuels treatment and pest management programs that are responsive to land and resource management goals and objectives (Goal 22). - Cooperate with other Federal, State and local regulatory agencies to protect air quality and minimize impacts on smoke sensitive areas (Goal 24). - Ensure Forest Service management activities do not degrade air quality in Class I Wilderness, Class II Wilderness and general Forest. Ensure that resource values in the Wilderness are protected from the effects of air pollutants (Goal 25). - Emphasize "Pack-In/Pack-Out," "Tread Lightly," and "No-Trace Camping" educational programs (Goal 30). - Maintain genetic diversity of forest stands. Maintain the health of forest stands through genetic resilience, thus reducing the impact of disease, animal, insect, or climatic damage (Goal 43). **<u>Strategy G:</u>** Enhance carbon storage in Mt. Hood National Forest and forest products. ## Desired Future Condition of Mt. Hood National Forest ("Vision Statements") The Forest in Fifty Years: After the Forest has been managed for 50 years as provided by the Mt. Hood National Forest Land and Resource Management Plan (hereafter referred to as the Forest Plan) (USDA Forest Service 1990), as amended, its present appearance will change to a more managed appearance. For example, it will be obvious that timber in certain areas will have been intensively harvested while wildlife habitats will have been preserved in other areas. Recreation use will intensify. **Timber:** After 50 years, many stands suitable and programmed for timber production will have been harvested. In areas intensively managed for timber, many of the existing mature and overmature stands have been harvested and replaced with more vigorous and faster growing, managed stands. Emphasis on stocking level control measures will increase. More of the total wood fiber in trees will be utilized if markets exist for it, resulting in less residue available for firewood. **Fish, Water and Wildlife:** Aquatic habitat capability over the long term is stable and improving. Standards to manage fish and water resources efficiently are in full effect. The implementation of rehabilitation and improvement programs will increase fish populations. Wildlife habitat diversity is moderate with identifiable tracts of mature and old growth stands managed for species depending on them. The majority of population levels will stabilize or decrease. Deer and/or elk populations may decrease. **Recreation:** Recreation in the Forest 50 years from now will depend to a significant extent on sites privately developed and operated. As demands for winter sports, organizational activities, and overall developed recreation opportunities increase, they will be met by concessionaires or permittees. Primitive and semi-primitive recreation opportunities are limited primarily to Wilderness, Special Interest Areas, and some Unroaded Areas where natural conditions will be maintained. In Wilderness, heavily used trails, trailheads, and campsites have been returned to a more primitive state. As the demand for dispersed recreation in an unroaded setting begins to exceed capacity, systems to limit usage such as reservations, fees, or other methods may be initiated. **Visual Corridors:** Visual corridors along popular travel routes should appear near-natural. Small openings and a variety of vegetation are visible along with improvements in viewpoints and vistas. Visitors who travel on roads outside main transportation corridors pass a mosaic of timber-cutting patterns. These vary in size, shape, and arrangement. These areas appear as part of an intensively managed forest. **Air Quality:** Vegetation and fuel management require less use of prescribed fire as timber harvesting changes from regeneration harvest to commercial thinning. The number of acres requiring prescribed fire is approximately half the number in the first decade of the plan. The amount of suspended particulates emitted will subsequently be reduced proportionately. Hence, visibility continues to be improved. **Local Communities:** Each community will have capitalized on its uniqueness and involved its citizens in the development of a desired future. The activities associated with the Pacific Northwest Strategy will continue to support the goals and plans of resource-dependent communities. #### Mt. Hood National Forest's Legal Framework ("Value Statements") **Organic Administration Act of 1897:** Authorized the President of the United States may set apart and reserve public land bearing forests to secure favorable conditions of water flow and to furnish a continuous supply of timber for the citizens of the United States. Clean Water Act of 1948 and reenacted by the Federal Water Pollution Control Act of 1972: An act whose purpose is to restore and maintain the chemical, physical, and biological integrity of the Nations waters. **Clean Air Act of 1955:** An act whose purpose is to protect and enhance the quality of the Nation's air resources so as to promote the public health and welfare and the productive capacity of its population. **Multiple-Use Sustained-Yield Act of 1960:** Declared that the National Forests are established and shall be administered for outdoor recreation, range, timber, watershed, and wildlife and fish purposes. **Wilderness Act of 1964:** Established a National Wilderness Preservation System of federally owned lands designated by Congress as wilderness areas, where the earth and its community of life are untrammeled by man and where man is only a visitor. **National Historic Preservation Act of 1966:** Authorized the Secretary of Agriculture to expand and maintain a National Register of Historic Places that are significant in American history in order to preserve the Nation's historical and cultural foundations as a living part of our community life. **Wild and Scenic Rivers Act of 1968:** Instituted a national wild and scenic rivers system where certain rivers designated by Congress are managed to preserve their free flowing characteristics and to protect their outstandingly remarkable values. **Endangered Species act of 1973:** Declared that all Federal departments and agencies shall seek to conserve threatened and endangered fish, wildlife and plant species. Forest and Rangeland Renewable Resources Planning Act of 1974 as amended by the National Forest Management Act of 1976: Directed the Secretary of Agriculture to develop, maintain and as appropriate revise land and resource management plans for units of the National Forest System. Established the plans would be developed using a systematic interdisciplinary approach to achieve integrated consideration of physical, biological, economic, and other sciences. **Healthy Forests Restoration Act of 2003:** An act whose purpose is to improve the capacity to conduct hazardous fuels reduction projects on National Forest System lands aimed at protecting communities, watersheds, and certain at-risk lands from catastrophic wildlife. #### **APPENDIX D: LIST OF PREPARERS** Boscheinen, Kristy—Planning Cartwright, Linda—Noxious Weeds DeRoo, Tom—Geology and Minerals Dodd, John—Soils Dyck, Alan—Wildlife/Botany Fiedler, Chuti—Fisheries Fissell, Dan—Range Garvey, Megan—Finance Geiser, Linda - Air Quality Hamilton, Malcolm—Recreation Lankford, Nancy—Silviculture Rice, Jeanne—Ecology Rice, Jim—Timber Siemens, Brad—Partnerships/Volunteers Steinblums, Ivars—Water Resources Tierney, Jim—*Transportation/Roads* Wenzl, Allie—Heritage Resources Wrightson, Jim—Fire # APPENDIX E: CUMULATIVE INSECT-CAUSED TREE MORTALITY, 1999-2009 #### **Appendix F: Mt. Hood National Forest Volume Summary 1994-2009** The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, sex, religion, age, disability, political beliefs, sexual orientation, and marital or family status. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, Room 326-W, Whitten Building, 14th and Independence Avenue, SW, Washington, DC 20250-9410 or call (202) 720-5964 (voice or TDD). USDA is an equal opportunity provider and employer.